Abstract:
A monitor for particles of various materials which counts the number of the particles on real-time and in situ basis. The monitor comprises a unit for illuminating an object to be inspected with an illumination light beam of a predetermined cross-sectional area, a unit for detecting a change in optical mode of the illumination light beam caused by the particles being contained in the inspected object and illuminated with the illumination light beam, the illuminating and detecting units being of a unitary structure, and a unit for counting an amount of the particles contained in the inspected object by using a change in intensity of an optically mode changed light beam.
Abstract:
The apparatus has a body receiving reaction containers that carries samples to be analyzed. The body is provided with a set of radially arranged seats. Each seat constitutes an entry of a scanning channel so that the reaction containers enter through an end of the channel by linear thrust. A sensor (12) picks up an image of a scanning head (11) to provide successive shots of the scanning head with a specific time interval. An independent claim is also included for a method for carrying out measurement of an optical absorbency of samples of liquids.
Abstract:
The present disclosure relates to the field of optical systems, in particular to an atomic emission spectrometer. The envisaged multi-scan optical system (100) is compact and stable. The system comprises an excitation source (104), a hydra fiber cable (106), a wavelength selector (103), a dispersive optical element (101), and a detector (102). The excitation source is configured to emit composite light. The hydra fiber cable has a head and a plurality of tentacles, and is configured to receive the composite light via a second lens. The plurality of tentacles is configured to emit the composite light towards the wavelength selector which includes a plurality of optical slits (s1 - s8) and a plurality of shutters. The wavelength selector is configured to selectively collect and filter the composite light directed by a first lens and the plurality of tentacles by means of the plurality of shutters. The detector is configured to detect the plurality of spectral line scans reflected by the dispersive optical element for spectrometric analysis.
Abstract:
A thermal cycling device ( 3 ) device a number of fixed thermal zones ( 11, 12, 13 ) and a fixed conduit ( 10 ) passing through the thermal zones. A controller maintains each thermal zone including its section of conduit ( 10 ) at a constant temperature. A series of droplets flows through the conduit ( 10 ) so that each droplet is thermally cycled, and a detection system detects fluorescence from droplets at all of the thermal cycles. The conduit is in a single plane, and so a number of thermal cycling devices may be arranged together to achieve parallelism. The flow conduit comprises a channel ( 17 ) and a capillary tube ( 10 ) inserted into the channel. The detection system may perform scans along a direction to detect radiation from a plurality of cycles in a pass.
Abstract:
The invention relates to an analysis device (1) comprising: a tight analytical circuit (3) comprising an injection loop (BI), at least one mixing loop (BM), and a turbidimetry analysis means (CD), a liquid being able to continuously circulate through the injection loop, the mixing loop and the analysis means; a means (IL) for injecting said liquid into said injection loop and a means for removing said liquid from a source (S); a means (ISR) for injecting, into said injection loop, a solution for displaying sulfates in said liquid by means of turbidimetry; and a means (ISP) for injecting a rinsing solution, comprising a peristaltic pump (PPB)and a system (VF, VG) of valves placed between the pump (PPB) and said injection loop. The invention is especially applicable in fields of the offshore oil industry.
Abstract:
A mammography device 1 is an apparatus for acquiring internal information of a breast B of an examinee A by radiating light to the breast B and detecting the diffused light, and includes a container 3 configured to surround the breast B and a plurality of optical fibers 11 attached to be directed inward in the container 3 and configured to perform radiation and detection of light. The container 3 has a base member 30 having an opening 30a, a plurality of annular members 40 continuously disposed to come in communication with the opening 30a, and a bottom member 50 disposed inside the annular member 40 spaced the farthest distance from the base member 30. The annular members 40 and the bottom member 50 are configured to relatively displace the adjacent annular member 40 on the side of the base member 30 or the base member 30 in a communication direction. Some of the plurality of optical fibers 11 is attached to the plurality of annular members 40.
Abstract:
An improved device and system for facilitating polymerase chain reaction including a light source, detector, waveguide, and filters that occupy minimal space and facilitate reduced sample read time and rapid reading of multiple light wavelengths.
Abstract:
An analytical instrument may have multiple distinct channels. Such may include one or more illumination sources and sensors. Illumination may be delivered to specific locations of a specimen holder, and returned illumination may be delivered to specific locations of a sensor array. Illumination may first pass a specimen, and a mirror or reflector may then return the illumination past the specimen. Optical splitters may be employed to couple pairs of fiber optics proximate a specimen holder. Such channels may further include a plurality of illumination sources positioned on one side of a specimen holder and a plurality of sensors on the other side. The plurality of sensor may capture image of a specimen and a spectrophotometer may concurrently scan the specimen. A plurality of specimens may be imaged and scanned in a single pass of a plurality of passes. Spherical or ball lenses may be placed in an optical path of the illumination to achieve a desired illumination pattern.