Abstract:
An apparatus for generating an oscillating output signal includes an inductive-capacitive (LC) circuit and a current tuning circuit. The LC circuit includes a primary inductor and a varactor coupled to the primary inductor. A capacitance of the varactor is responsive to a voltage at a control input of the varactor. The current tuning circuit includes a secondary inductor and a current driving circuit coupled to the secondary inductor. The current driving circuit is responsive to a current at a control input of the current driving circuit. An effective inductance of the primary inductor is adjustable via magnetic coupling to the secondary inductor, and a frequency of the oscillating output signal is responsive to the effective inductance of the primary inductor and to the capacitance of the varactor.
Abstract:
A multiple frequency reconfigurable voltage controlled oscillator (VCO) (136) includes a variable capacitance device (112), an inductor (116) coupled in parallel with the variable capacitance device (112), and at least two circuit paths (118, 120, 122) coupled in parallel with the variable capacitance device (112) and the inductor (116). The circuit paths (118, 120, 122) each include a piezoelectric laterally vibrating resonator (126, 130, 134) and a switch (124, 128, 132) for selectably coupling each piezoelectric laterally vibrating resonator (126, 130, 134) in parallel with the inductor (116) and variable capacitance device (112).
Abstract:
One embodiment of the present invention relates to a digital controlled oscillator. The oscillator includes an oscillator circuit, a varactor array, and a control circuit. The oscillator circuit receives a control word and a signal and generates an oscillator clock signal from the signal at a frequency selected by the control word. The varactor array has a first array of varactor cells having incremental capacitance values and a second array of varactor cells having equal capacitance values. The split varactor array provides a capacitance value. A control circuit is coupled to the oscillator circuit and controls the split varactor array according to the control word. The control circuit sets varactor cells of the split varactor array on or off.
Abstract:
A tunable resonant circuit (102) includes first capacitors (104, 108, 216, 228, 232) and second capacitors (106, 1 10, 218, 230, 234) that provide a matched capacitance between first and second electrodes of the first and second capacitors. A deep-well arrangement includes a first well (320, 326) disposed within a second well (322, 328) in a substrate (324). The first and second capacitors are each disposed on the first well. Two channel electrodes of a first transistor (120, 130) are respectively coupled to the second electrode (1 14, 304) of the first capacitor and the second electrode (1 18, 308) of the second capacitor. Two channel electrodes of a second transistor (122, 132) are respectively coupled to the second electrode of the first capacitor and to ground. Two channel electrodes of the third transistor (124, 134) are respectively coupled to the second electrode of the second capacitor and to ground. The gate electrodes (226, 314) of the first, second, and third transistors are responsive to a tuning signal (126, 136), and an inductor (144, 202) is coupled between the first electrodes (1 12, 1 16, 302, 306) of the first and second capacitors.
Abstract:
A fully integrated, programmable mixed-signal radio transceiver comprising a radio frequency integrated circuit (RFIC) which is frequency and protocol agnostic with digital inputs and outputs, the radio transceiver being programmable and configurable for multiple radio frequency bands and standards and being capable of connecting to many networks and service providers. The RFIC includes a tunable resonant circuit that includes a transmission line having an inductance, a plurality of switchable capacitors configured to be switched into and out of the tunable resonant circuit in response to a first control signal, and at least one variable capacitor that can be varied in response to a second control signal, wherein a center resonant frequency of the resonant circuit is electronically tunable responsive to the first and second control signals that control a first capacitance value of the plurality of switchable capacitors and a second capacitance value of the at least one variable capacitor.
Abstract:
A VCO circuit for a fractional-n PLL circuit is described for implementing a direct modulation scheme. An embodiment of the invention provides a bank of switchable capacitors used to stringently control the gain of the VCO (KVCO). The capacitors provide the stringent control necessary for direct modulation. The bank of switchable capacitors is used to coarsely tune the VCO circuit. A linear capacitor is placed in series with the varactor to linearize the frequency/capacitance response of the varactor. The capacitor also serves to isolate a reference voltage that is used to bias the varactor diode to ensure the linear range of the varactor is within the voltage range of the VCO circuit power supply. The varactor is used for fine tuning of the VCO circuit. For one embodiment the input voltages to the VCO are across a resistance value sufficient to dampen noise picked up through an external loop filter.
Abstract:
The invention relates to a resonator (200, 300) with variable resonance frequency, intended for connection to an amplifier, thus forming an oscillator, said resonator comprising a resonator circuit (205, 305) for deciding the resonance frequency of the resonator and the oscillator, said resonator circuit comprising an inductance (L), a variable capacitance (Cj), and means (Vtune) for varying the capacitance. The resonator also comprises connection means (C1, Ck; C1, Ck, C2) for connecting the resonator to an amplifier. The resonator is provided with means (Vtune) for varying the capacitance of the connection means in proportion to the variation of the capacitance (Cj) of the resonator circuit. Preferably, the means (Vtune) for varying the capacitance (Ck) of the connection means are arranged such that an essentially constant relationship (Ck/Cj) is maintained between the capacitance (Ck) of the connection means and the first capacitance (Cj) of the resonator across all resonance frequencies.