Abstract:
Various embodiments relate to a circuit board, including a base and a heat-conducting layer. The base has a first region and a second region on one side thereof facing the heat-conducting layer, the first region is recessed with respect to the second region, a first insulating layer is accommodated in the first region, a second insulating layer is formed on the second region, and the first insulating layer and the second insulating layer have different thermal conductivities. In addition, various embodiments further relate to an electronic module and an illuminating device including such circuit board. Various embodiments also relate to a method for manufacturing such circuit board.
Abstract:
A light emitting device package including a base including a top flat surface; an insulating layer on the base; a light emitting diode on the base; an optical member comprising a light transmissive material such that light emitted from the light emitting diode passes therethrough; a guiding member to guide the optical member, the guiding member having a ring shape; an electrical circuit layer electrically connected to the light emitting diode, the electrical circuit layer including an electrode portion and an extended portion, the electrode portion disposed inside the guiding member and electrically connected to the light emitting diode, the extended portion extended from the electrode portion to outside the guiding member; and an electrode layer on the electrode portion of the electrical circuit layer and electrically connected to the light emitting diode.
Abstract:
Different kinds of printing pastes or inks are utilized in various combinations to develop multiple ceramic dielectric layers on graphitic substrates in order to create effective dielectric ceramic layers that combine good adhesion to both graphitic substrates and printed copper traces, and strong insulating capability. The pastes or inks may comprise a high thermal conductivity powder.
Abstract:
A semiconductor device, while being small, makes it possible to achieve low inductance responding to high speed switching. The semiconductor device includes a plurality of conductive pattern members, on each of which is mounted one or a plurality of power semiconductor chips, and a printed circuit board wherein a chip rod-form conductive connection member connected to the power semiconductor chip and a pattern rod-form conductive connection member connected to the conductive pattern member are disposed on the surface opposing the conductive pattern member. The conductive pattern member is formed of a narrow portion and a wide portion, the narrow portion of at least one conductive pattern member and the printed circuit board are connected by the pattern rod-form conductive connection member, and a current path is formed between the conductive pattern member and the power semiconductor chip connected via the chip rod-form conductive connection member to the printed circuit board.
Abstract:
The present invention discloses a light emitting package, including: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a width of a cross-sectional shape of the screen member is larger than a height of the cross sectional shape of the screen member, wherein the lens is disposed on the screen member, and wherein the lens is connected to an uppermost surface of the screen member.
Abstract:
Present thermal solutions to conduct heat from pluggable optical modules into heat sinks use a metal heat sink attached with a spring clip. The interface between the pluggable module and the heat sink is simple metal-on-metal contact, which is inherently a poor thermal interface and limits heat dissipation from the optical module. Heat dissipation from pluggable optical modules is enhanced by the application of thermally conductive fibers, such as an advanced carbon nanotube velvet. The solution improves heat dissipation while preserving the removable nature of the optical modules.
Abstract:
The present invention discloses a light emitting package, including: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a width of a cross-sectional shape of the screen member is larger than a height of the cross sectional shape of the screen member, wherein the lens is disposed on the screen member, and wherein the lens is connected to an uppermost surface of the screen member.
Abstract:
The present invention discloses a light emitting package, comprising: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a gold layer on the electrical circuit layer; a wire electrically connected between the light emitting device and the gold layer; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a cross-sectional shape of the screen member is substantially rectangular, and a width of the cross-sectional shape of the screen member being larger than a height of the cross sectional shape of the screen member, wherein a bottom surface of the screen member is positioned higher than the light emitting device, and wherein an entire uppermost surface of the screen member is in contact with the lens.
Abstract:
The present invention discloses a light emitting package, comprising: a base; a light emitting device on the base; an electrical circuit layer electrically connected to the light emitting device; a gold layer on the electrical circuit layer; a wire electrically connected between the light emitting device and the gold layer; a screen member having an opening and disposed on the base adjacent to the light emitting device; and a lens covering the light emitting device, wherein a cross-sectional shape of the screen member is substantially rectangular, and a width of the cross-sectional shape of the screen member being larger than a height of the cross sectional shape of the screen member, wherein a bottom surface of the screen member is positioned higher than the light emitting device, and wherein an entire uppermost surface of the screen member is in contact with the lens.
Abstract:
A semiconductor light emitting package is discussed, which includes a base having a top surface with a flat portion; a semiconductor light emitting device on the base; an electrical circuit layer electrically connected to the semiconductor light emitting device; a screen member having an opening and disposed on the base around the semiconductor light emitting device, the screen member shaped into a substantially circle; and an optical member formed of a light transmissive material such that light emitted from the semiconductor light emitting device passes therethrough, wherein a bottom surface of the screen member is positioned higher than the semiconductor light emitting device, an edge portion of the optical member is in contact with the screen member, a top surface of the optical member is substantially parallel to the flat portion of the base.