Abstract:
Apparatus and method are provided for a package structure that enables mounting of a field-emitting cathode into an electron gun. A non-conducting substrate has the cathode attached and the cathode is electrically connected to a pin through the substrate. Other pins are electrically connected to electrodes integral with the cathode. Three cathodes may be mounted on a die flag region to form an electron gun suitable for color CRTs. Accurate alignment of an emitter array to the apertures in the electron gun and other electrodes such as a focusing lens is achieved. The single package design may be used for many gun sizes. Assembly and attachment of the emitter array to the electron gun during construction of the gun can lower cost of construction.
Abstract:
A method for fabricating a field emission display (200) includes the steps of affixing a first tab (122) of an alignment member (120) to a protruding portion (118) of an anode plate (113), affixing a second tab (122) of the alignment member (120) to a protruding portion (121) of a cathode plate (112), aligning the anode plate (113) with the cathode plate (112), affixing the anode plate (113) to the cathode plate (112), and, thereafter, removing the alignment member (120) by removing both the protruding portion (118) of the anode plate (113) and the protruding portion (121) of the cathode plate (112). The tabs (122) are connected to a spacer (124). The thermal expansion coefficients of the cathode plate (112), the anode plate (113), and the alignment member (120) are substantially equal to one another.
Abstract:
A field emission display having emitters controlled by an integrated driving circuit. The field emission display includes a charge shield positioned above exposed areas of the substrate to protect driving circuitry integrated into the substrate. The charge shield is a conductive layer within an insulative layer covering the driving circuit. The charge shield is connected to ground or to a low reference potential to bleed away current within the insulative layer, thereby preventing drifting charges from affecting the electrical response of the integrated driving circuit. The charge shield also terminates electric fields within the insulative layer to reduce the effect on the integrated driving circuit of dynamic variations in surface charge. Electrical characteristics of the driving circuit thus remain constant, reducing variations in the current supplied to the emitters, thereby reducing variations in the intensity of light emitted by the display.
Abstract:
According to two aspects of the invention, a FED and a process for making a FED are provided which effectuate more accurate and efficient sealing between a faceplate and a backplate assembly, with more accurate and efficient sealing between the faceplate (10) and cathode member (12). The FED is made according to a process comprising: aligning the faceplate and the cathode member; disposing an adhesive (16) between the faceplate and the cathode member; pressing the faceplate and the cathode member together; disposing a frit seal (18) between the faceplate and the backplate assembly; and heating the frit seal to a temperature sufficient to cause the frit to seal.
Abstract:
A cell driving device of a field emission display according to a passive matrix addressing method having a field emission pixel cell with a cathode (10) and a gate electrode (12) for emitting electrons from the cathode. The cell driving device includes at least two current sources (18, 20) disposed to provide a current signal to the cathode; and a controlling part (22) for selectively driving at least two current sources (18, 20) according to the size of a video signal.
Abstract:
A cell driving circuit of an FED, including: an electrode plate (10) connected to ground potential, for installing a plurality of cathodes (C11 to C44) which serve to emit electrons; two or more gate electrodes (G1 to G4) disposed in the upper portion of the cathodes (C11 to C44); two or more switching units (T1 to T4) for switching voltages to be applied to the two or more gate electrodes (G1 to G4); and a control unit (20) for driving the number of the two or more switching units (T1 to T4) corresponding to size of a video signal (VS) in accordance with the size of the video signal (VS).
Abstract:
Flat panel image sensor (10) is provided by combining photoconductive imaging electrodes of a vidicon with a two-dimensional array of cold cathode field emitters (14) commonly used for flat panel field emission display (FED) systems. The FED operates normally to emit electrons which are accelerated in prior art displays towards a luminescent phosphor to generate light output proportional to the cathode emission. Rather than accelerating towards a phosphor, electrons are accelerated towards a photoconductor layer (16) to replace charge removed from the layer by an incident radiation pattern directed at the photoconductor layer (16) through a layer of transparent, electrically-conducting material (17) which serves as a radiation window. The transparent, electrically-conducting layer (17) may be partitioned to reduce stray capacitance for large area sensors and the partitioned, electrically-conducting layer (17) permits a parallel readout mode of operation.
Abstract:
A field emitter structure, comprising: a base substrate (42); a field emitter element (48) on the base substrate; a multilayer differentially etched dielectric stack (58, 60) circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode (66) overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.