Abstract:
하부 기판 위에 확실하게 고정된 구성요소와 상기 하부 기판 위에서 이동 가능한 구성요소로 이루어진 미소 기전 시스템(MEMS)을 제조하는 프로세스가 제공된다. 상기 프로세스는 상기 하부 기판과는 별개인 상부 기판을 사용한다. 상기 하부 기판의 하부 층으로부터 공통적으로 돌출하는 복수의 포스트를 상기 상부 기판 안에 형성하기 위해 상기 상부 기판의 상부 층을 선택적으로 에칭한다. 상기 포스트는 상기 하부 기판에 고정되는 고정된 구성요소와 상기 고정된 구성요소에 대해 이동될 수 있는 하나 이상의 고정된 구성요소에만 탄성적으로 지지되는 가동 구성요소를 포함한다. 상기 하부 기판은 그 상부 표면에 적어도 하나의 오목부가 형성된다. 그런 다음, 상기 고정된 구성요소가 사기 하부 기판 위에 직접 위치하고 상기 가동 구성요소가 상기 오목부의 상향으로 위치하도록 상기 상부 기판이 위에서 아래로 상기 하부 기판의 상부에 결합된다. 최종적으로, 상기 고정된 구성요소를 상기 하부 기판의 상부에 계속 고정하면서, 상기 가동 구성요소가 상기 오목부 위에서 부유적이게 되어 상기 하부 기판에 대해 이동할 수 있도록 상기 가동 구성요소를 상기 하부 층으로부터 해제하도록 상기 하부 기판의 상기 하부 층을 제거한다. 상부 기판, 하부 기판, 고정된 구성요소, 가동 구성요소, 오목부
Abstract:
A process for fabricating a micro- electro-mechanical system (MEMS) composed of fixed components fixedly supported on a lower substrate and movable components movably supported on the lower substrate. The process utilizes an upper substrate separate from the lower substrate. The upper substrate is selectively etched in its top layer to form therein a plurality of posts which project commonly from a bottom layer of the upper substrate. The posts include the fixed components to be fixed to the lower substrate and the movable components which are resiliently supported only to one or more of the fixed components to be movable relative to the fixed components. The lower substrate is formed in its top surface with at least one recess. The upper substrate is then bonded to the top of the lower substrate upside down in such a manner as to place the fixed components directly on the lower substrate and to place the movable components upwardly of the recess. Finally, the bottom layer of the upper substrate is removed to release the movable components from the bottom layer for floating the movable components above the recess and allowing them to move relative to the lower substrate, while keeping the fixed components fixed to the top of the lower substrate.
Abstract:
PURPOSE: A micro inertia sensor and a method for manufacturing the same are provided to be capable of reducing the size of the sensor and simplifying manufacturing processes by improving the structure of the sensor. CONSTITUTION: A micro inertia sensor is provided with a lower glass substrate(1), a lower silicon layer(2) including the first edge part(2a), the first fixing part(2b), a side motion detecting structure(2c), formed at the upper portion of the lower glass substrate, an upper silicon layer(4) includes the second edge part(4a), the second fixing part(4b), and an upper detecting electrode(4c) corresponding to the first edge part, the first fixing part, the side motion detecting structure, respectively, formed at the upper portion of the lower silicon layer, an adhesive layer(3) located between the lower and upper silicon layer, and an upper glass substrate(5) including a conductive line(6) and a via hole(5a), formed at the upper portion of the resultant structure.
Abstract:
A microfabricated device is fabricated by depositing a first metal layer on a substrate to provide a first electrode of an electrostatic actuator, depositing a first structural polymer layer over the first metal layer, depositing a second metal layer over said first structural polymer layer to form a second electrode of the electrostatic actuator, depositing an insulating layer over said first structural polymer layer, planarizing the insulating layer, etching the first structural polymer layer through the insulating layer and the second metal layer to undercut the second metal layer, providing additional pre-formed structural polymer layers, at least one of which has been previously patterned, and finally bonding the additional structural layers in the form of a stack over the planarized second insulating layer to one or more microfluidic channels. The technique can also be used to make cross over channels in devices without electrostatic actuators, in which case the metal layers can be omitted.
Abstract:
Provided is a workpiece bonding method that makes it possible to achieve a joining state with a high strength and to obtain a good repeatability of the joining state. A workpiece bonding method according to the present invention is a workpiece bonding method for bonding two workpieces to each other, each of the two workpieces being composed of a material selected from the group consisting of synthetic resin, glass, silicon wafer, crystal and sapphire, the workpiece bonding method including: a surface activation step of activating a bonded surface of at least one of the workpieces; and a laminating step of laminating the two workpieces such that respective bonded surfaces contact with each other, and a pretreatment step of removing moisture from the bonded surface of the workpiece that is to be subjected to the surface activation step is performed before the surface activation step is performed.
Abstract:
An interposer comprises a substrate and a plurality of posts. Each of the posts extends substantially through a thickness of the substrate. A method for forming an interposer comprises forming a fill hole in a first side of a substrate and a cavity in a second side of the substrate. The cavity is in fluidic communication with the fill hole. A plurality of posts is formed in the cavity. An encapsulant is injected through the fill hole into the cavity to encapsulate the plurality of posts.