Abstract:
Systems and methods for providing spectral measurements are described. In one embodiment, a spectral measuring device comprises at least one radiation source configured to provide N (N ≥ 2) linearly independent illuxninant sources characterized by M (M ≥ N) wavelength channels in a predetermined wavelength range; a sensor unit including at least one sensor, configured to be in optical communication with the radiation sources and an object; a memory storing an illuminant characterization matrix including spectral characteristics of the N illuminant sources in the M wavelength channels; and a processor configured to provide spectral responses of the object in the M wavelength channels, based at least in part on the illuminant characterization matrix. The embodiments of the invention can be used to construct a new class of compact spectral measuring devices, such as handheld color measuring devices.
Abstract:
A light source (700) for use in a spectrometer. A reflector is formed with a parabolic hole (610) formed therein. A light emitting diode (770A, D) is placed in the parabolic hole (610). In the case where multiple LEDs (770A, D) are used in the light source (700), central axis through each of the parabolic holes are aligned so as to coincide a predetermined location. With LEDs in the parabolic holes, the light emitted will be focused on the predetermined location.
Abstract:
The invention relates to an arrangement for continuous determination of a substance comprising a chemically reacting sensor element (21) arranged in or adjacent to a limiting wall of a volume (22) containing the substance, where in a housing (2) of a modular device (1) optical elements to read the sensor element (21) are arranged, comprising at least one light source (35) illuminating the sensor element (21) and at least one sample detector (29) detecting the light scattered by the sensor element (21), and where a front side of the housing (2) comprises a coupling for the sensor element (21), so that the sensor element (21) may be interchangeably and modularly coupled to the front side of the housing (2). A glass body (24) is arranged adjacent to the coupling for direct contact with the sensor element (21) and separate conduits (34, 31) for the illuminating and for the scattered light are arranged rearward of the glass body (24). The modular device (1) allows for easily interchanging the modular sensor element (21) and provides an optical connection between the sensor element (21) and the detector (29) which is steady and allows for high quality measurements.
Abstract:
A curved mirrored surface (78) is used to collect radiation scattered by a sample surface (76a) and originating from a normal illumination beam (70) and an oblique illumination beam (90). The collected radiation is focused to a detector (80). Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams (70, 90) on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors (78) to restrict detection to certain azimuthal angles.
Abstract:
Imaging of a turbid object utilizes interference among the modulation wavefronts (24) of a plurality of modulated light rays (22) propagating through the object by diffusion and having predetermined phases relative to one another. A computer controlled phase and amplitude selecting device, such as a zone plate (34) is used to modulate light rays at appropriate phases in order to obtain constructive interference only at a predetermined portion of the object, including one or more preselected voxels (26). The rays reflected from (or diffusively transmitted through) the predetermined portion are received simultaneously at a detector (16) thus providing simultaneously all the data necessary to describe or image the portion. A single detector (16) element may be used to detect the scattered reflected or transmitted light from the portion and to generate a signal representing the amplitude and phase characteristics for the modulation wavefront, thereby to provide absorption (and other) characteristics descriptive of the portion.
Abstract:
Systems and methods for determining one or more properties of a sample are disclosed. The systems and methods disclosed can be capable of measuring along multiple locations and can reimage and resolve multiple optical paths within the sample. The system can be configured with one-layer or two-layers of optics suitable for a compact system. The optics can be simplified to reduce the number and complexity of the coated optical surfaces, etalon effects, manufacturing tolerance stack-up problems, and interference-based spectroscopic errors. The size, number, and placement of the optics can enable multiple simultaneous or non-simultaneous measurements at various locations across and within the sample. Moreover, the systems can be configured with an optical spacer window located between the sample and the optics, and methods to account for changes in optical paths due to inclusion of the optical spacer window are disclosed.
Abstract:
An optical module includes: a measuring device including a measuring portion that measures light reflected at a measurement position of a measurement target, a light source that radiates light onto the measurement position in a direction crossing a measurement optical axis oriented from the measurement position to the measuring portion, and a window through which light incident on the measuring portion passes; and a shutter that opens and closes the window of the measuring device. The shutter is provided with a reference object disposed closer to the measuring portion side than the measurement position on the measurement optical axis, on a face of the shutter facing the measuring portion when closing the window, and the optical module includes a light guide that guides the light from the light source to the reference object when the window is closed by the shutter.
Abstract:
An optical package is provided. The optical package includes an interference splitter allowing a light having a predetermined wavelength range to transmit through, a sensing element, and a light-transmitting structure. The light-transmitting structure includes a light-transmitting pillar and a light-absorbing layer surrounding the light-transmitting pillar, and the light-absorbing layer absorbs the light having the predetermined wavelength range. The interference splitter, the light-transmitting pillar, and the sensing element are arranged aligned with each other along an extending direction of the light-transmitting pillar. The sensing element is configured to receive the light transmitting through the interference splitter and the light-transmitting pillar.
Abstract:
The present concept is a portable color sensor for measuring color of a substrate that includes a single flat printed circuit board with a top and bottom side which includes at least one LED light and one color sensor and at least one light pipe receiving light from the LED and transmitting it onto a substrate at an angle theta. It also includes a tube frame including an optical tube for receiving light reflections from the substrate and directing the reflections to the color sensor. The light pipes and the tube frame, are mounted and compression fit between the printed circuit board and a lower housing.
Abstract:
Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.