Optical Inspection System and Method Including Accounting for Variations of Optical Path Length Within a Sample

    公开(公告)号:US20230314321A1

    公开(公告)日:2023-10-05

    申请号:US18205551

    申请日:2023-06-04

    Applicant: Apple Inc.

    CPC classification number: G01N21/59 G01N21/49 G01N2021/1782

    Abstract: An illuminator/collector assembly can deliver incident light to a sample and collect return light returning from the sample. A sensor can measure ray intensities as a function of ray position and ray angle for the collected return light. A ray selector can select a first subset of rays from the collected return light at the sensor that meet a first selection criterion. In some examples, the ray selector can aggregate ray intensities into bins, each bin corresponding to rays in the collected return light that traverse within the sample an estimated optical path length within a respective range of optical path lengths. A characterizer can determine a physical property of the sample, such as absorptivity, based on the ray intensities, ray positions, and ray angles for the first subset of rays. Accounting for variations in optical path length traversed within the sample can improve accuracy.

    Light Source Modules for Noise Mitigation

    公开(公告)号:US20230012376A1

    公开(公告)日:2023-01-12

    申请号:US17859912

    申请日:2022-07-07

    Applicant: Apple Inc.

    Abstract: Configurations for light source modules and methods for mitigating coherent noise are disclosed. The light source modules may include multiple light source sets, each of which may include multiple light sources. The light emitted by the light sources may be different wavelengths or the same wavelength depending on whether the light source module is providing redundancy of light sources, increased power, coherent noise mitigation, and/or detector mitigation. In some examples, the light source may emit light to a coupler or a multiplexer, which may then be transmitted to one or more multiplexers. In some examples, the light source modules provide one light output and in other examples, the light source modules provide two light outputs. The light source modules may provide light with approximately zero loss and the wavelengths of light may be close enough to spectroscopically equivalent respect to a sample and far enough apart to provide coherent noise mitigation.

    Multiplexing and encoding for reference switching

    公开(公告)号:US11041758B2

    公开(公告)日:2021-06-22

    申请号:US16095323

    申请日:2017-04-13

    Applicant: Apple Inc.

    Abstract: Methods and systems for measuring one or more properties of a sample are disclosed. The methods and systems can include multiplexing measurements of signals associated with a plurality of wavelengths without adding any signal independent noise and without increasing the total measurement time. One or more levels of encoding, where, in some examples, a level of encoding can be nested within one or more other levels of encoding. Multiplexing can include wavelength, position, and detector state multiplexing. In some examples, SNR can be enhanced by grouping together one or more signals based on one or more properties including, but not limited to, signal intensity, drift properties, optical power detected, wavelength, location within one or more components, material properties of the light sources, and electrical power. In some examples, the system can be configured for optimizing the conditions of each group individually based on the properties of a given group.

    Laser architectures using quantum well intermixing techniques

    公开(公告)号:US12300974B2

    公开(公告)日:2025-05-13

    申请号:US18244752

    申请日:2023-09-11

    Applicant: Apple Inc.

    Abstract: A laser chip including a plurality of stripes is disclosed, where a laser stripe can be grown with an initial optical gain profile, and its optical gain profile can be shifted by using an intermixing process. In this manner, multiple laser stripes can be formed on the same laser chip from the same epitaxial wafer, where at least one laser stripe can have an optical gain profile shifted relative to another laser stripe. For example, each laser stripe can have a shifted optical gain profile relative to its neighboring laser stripe, thereby each laser stripe can emit light with a different range of wavelengths. The laser chip can emit light across a wide range of wavelengths. Examples of the disclosure further includes different regions of a given laser stripe having different intermixing amounts.

    Optical system for noise mitigation

    公开(公告)号:US12140291B2

    公开(公告)日:2024-11-12

    申请号:US18543225

    申请日:2023-12-18

    Applicant: Apple Inc.

    Abstract: Configurations for a photonics assembly design and methods for mitigating coherent noise thereof are disclosed. The photonics assembly may include a set of light sources, an optical subsystem that may include a set of optical elements, and a diffusing element. The light emitted by the set of light sources may be different wavelengths and the light may be de-cohered by a phase shifter before being received by the set of optical elements. The diffusing element may be moveable and may be capable of repeating the same positions or set of positions for each beam of light emitted by the set of light sources. By combining the coherent noise mitigation techniques of the moveable diffusing element and the de-cohered light, the photonics system may provide an illumination profile with a specific spatial profile and angular profile on the sample that allows reliable measurement of the sample and coherent noise mitigation.

    Mach-Zehnder interferometer device for wavelength locking

    公开(公告)号:US11835836B1

    公开(公告)日:2023-12-05

    申请号:US17015974

    申请日:2020-09-09

    Applicant: Apple Inc.

    CPC classification number: G02F1/21 G02F1/212

    Abstract: Disclosed herein is an integrated photonics device including an on-chip wavelength stability monitor. The wavelength stability monitor may include one or more interferometric components, such as Mach-Zehnder interferometers and can be configured to select among the output signals from the interferometric components for monitoring the wavelength emitted by a corresponding photonic component, such as a light source. The selection may be based on a slope of the output signal and in some examples may correspond to a working zone at or around a wavelength or wavelength range. In some examples, the interferometric components can be configured with different phase differences such that the corresponding working zones have different wavelengths. In some examples, the slopes of the output signals may be weighted based on the steepness of the slope and all of the output signals may include information for wavelength locking the measured wavelength to the target wavelength.

Patent Agency Ranking