Abstract:
Apparatus for transporting a load (24) between source and destination locations, comprising an aircraft having a body (11), power plant (12) carried by the body (11) to drive the aircraft both generally vertically and also generally horizontally, the aircraft also having a wing structure (14-15) that has a leading edge remaining presented in the direction of flight; and load pick-up, carry and set-down means (22) connected to the aircraft to elevate the load (24) from the source location, transport the elevated and air-borne load (24) generally horizontally, and set the load (24) down at the destination location, the body (11) and power plant (12) configured for vertical flight mode to elevate and set down the load (24), and for generally horizontal flight mode to transport the elevated load (24) generally horizontally below the level of the aircraft body (11).
Abstract:
A VTOL aircraft includes at least one puller rotor and at least one pusher rotor. The VTOL aircraft, for example, may include three puller rotors and one pusher rotor. The combination of static puller and pusher rotors allows the rotors to remain in a fixed orientation (i.e., no moving mechanical axes are required) relative to the wings and fuselage of the VTOL aircraft, while being able to transition the aircraft from a substantially vertical flight path to a substantially horizontal flight path.
Abstract:
The invention provides an ellipsoidal aircraft, wherein the housing (8) is provided with an upper cover (1) and a pedestal (6), the pedestal is coaxial with the housing, a whirling arm (2) is arranged at a junction between the upper cover and the housing, and a fixing sleeve (9) internally equipped with a motor (5) is arranged at a middle position of a lower side of the whirling arm. Such design effectively prevents blades and the motor from being damaged due to loosening of the whirling arm during transmission and solves the problem that conventional equipment is easily damaged.
Abstract:
An aircraft (10) having a vertical takeoff and landing fight mode and a forward flight mode. The aircraft (10) includes an airframe (12) and a versatile propulsion system attached to the airframe (12). The versatile propulsion system includes a plurality of propulsion assemblies (26a-d). A flight control system (40) is operable to independently control the propulsion assemblies (26a-d). The propulsion assemblies (26a-d) are interchangeably attachable to the airframe (12) such that the aircraft (10) has a liquid fuel flight mode and an electric flight mode. In the liquid fuel flight mode, energy is provided to each of the propulsion assemblies (26a-d) from a liquid fuel. In the electric flight mode, energy is provided to each of the propulsion assemblies (26a-d) from an electric power source.
Abstract:
L'invention concerne un drone à voilure tournante (10) comprenant un corps de drone (12) comprenant une carte électronique contrôlant le pilotage du drone, quatre bras de liaison (16) comprenant fixé solidairement un bloc propulseur (14). Les bras de liaison (16) forment des ailes portantes.
Abstract:
The disclosure thus relates to a light unmanned vertical takeoff aerial vehicle (1) which comprises at least two fixed coplanar propulsion devices (7) and at least one wing (3) providing the drone (1) with lift. The coplanar propulsion devices (7) and the wing (3) are each arranged on the framework (10) of the drone (1) such that the plane of the chord of the profile of the wing (3) is substantially parallel to the plane defined by the two coplanar propulsion devices (7). The wing (3) is capable of a pivoting movement with respect to the framework (10) about an axis parallel to the pitch axis of the drone (1). The disclosure also relates to a method for controlling a light unmanned aerial vehicle (1) like the one described hereinabove, which involves a step of controlling the orientation of the wing (3), which uses at least one parameter pertaining to the flight of the drone (1).
Abstract:
An air vehicle (10) comprising a main body (12) and a pair of opposing wing members (14a, 14b) extending substantially laterally from the main body (12) having a principal axis orthogonal to the longitudinal axis (20) of said wing members, at least a first propulsion device (16a) associated with a first of said wing members arranged and configured to generate a linear thrust relative to the main body in a first direction, and a second propulsion device (16b) associated with a second of said wing members arranged and configured to generate linear thrust relative to said main body in a second, substantially opposite, direction such that said wing members and said main body are caused to rotate about said principal axis, in use, the air vehicle further comprising an imaging system (100) configured to cover a substantially 360o imaging area about said principal axis and comprising at least one electro-optic sensor (102) mounted on a support member (104) and having a field of view (102a) covering a portion of said imaging area, said support member being mounted on said air vehicle, said imaging system (100) further comprising a control module (400) configured to define an object or region of interest in relation to said air vehicle, determine a nominal sensor field of view incorporating said object or region of interest, and obtain sequential image data from a sensor having a field of view matching said nominal field of view as said air vehicle completes a rotary cycle.
Abstract:
An air vehicle (10) comprising a main body (12)and a pair of opposing wing members (14a, 14b) extending substantially laterally from the main body (12), at least a first propulsion device (16) associated with a first of said wing members (14a) and a second propulsion device (16) associated with a second of said wing members (14b), each said propulsion device (16) being arranged and configured to generate linear thrust relative to said main body (12), in use, the air vehicle further comprising a control module for generating a control signal configured to change a mode of flying of said air vehicle, in use, between a fixed wing mode (Figure 2) and a rotary wing mode (Figure 3), wherein, in said fixed wing mode of flying, the direction of thrust generated by the first propulsion device (16) relative to the main body (12) is the same as the direction of thrust generated by the second propulsion device (16), and in said second mode of flying, the direction of thrust generated by the first propulsion device (16) relative to the main body is opposite to that generated by the second propulsion device (16).
Abstract:
A rotary-wing air vehicle comprising a main body (12) and at least two rotor devices (16a, 16b) arranged and configured to generate propulsion and thrust, in use, to lift and propel said air vehicle, said rotor devices (16a, 16b) being arranged and configured relative to said main body (12) such that the blades thereof do not cross through a central vertical axis of said main body (12) defining the centre of mass thereof, wherein said main body (12) is provided with an aperture (100) that extends therethrough to define a channel about said central vertical axis.