Abstract:
A semiconductor device, comprises: a carrier substrate in which a semiconductor chip is mounted; and a land formed in the carrier substrate and arranged in a region different from the mounting face of the semiconductor chip, wherein a coarse face, the surface roughness of which is 20 through 100 μm, is formed in a bonding face of the land.
Abstract:
An interconnect for testing semiconductor components includes a substrate, and contacts on the substrate for making temporary electrical connections with bumped contacts on the components. Each contact includes a recess and a pattern of leads cantilevered over the recess configured to electrically engage a bumped contact. The leads are adapted to move in a z-direction within the recess to accommodate variations in the height and planarity of the bumped contacts. In addition, the leads can include projections for penetrating the bumped contacts, a non-bonding outer layer for preventing bonding to the bumped contacts, and a curved shape which matches a topography of the bumped contacts. The leads can be formed by forming a patterned metal layer on the substrate, by attaching a polymer substrate with the leads thereon to the substrate, or be etching the substrate to form conductive beams.
Abstract:
Resistive materials have resistivities that are axis dependent are provided. Such resistive materials having a resistivity in a first direction and a very different resistivity in an orthogonal direction. These resistive materials are particularly suitable for use as resistors embedded in printed wiring boards.
Abstract:
The invention relates to an electronic component with external connection elements and to a method of electrically connecting and/or fixing an electronic component to a printed-circuit board. For this purpose, the electronic component has capillary elements as external connection elements, which are connected to contact connection areas of a leadframe or to contact areas of a chip. The capillary element protrudes out of the electronic component and has, on its protruding end, a suction opening with capillary action.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A method of engaging electrically conductive test pads on a semiconductor substrate having integrated circuitry for operability testing thereof includes: a) providing an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate; b) engaging the grouping of apexes with the single test pad on the semiconductor substrate; and c) sending an electric signal between the grouping of apexes and test pad to evaluate operability of integrated circuitry on the semiconductor substrate. Constructions and methods are disclosed for forming testing apparatus comprising an engagement probe having an outer surface comprising a grouping of a plurality of electrically conductive projecting apexes positioned in proximity to one another to engage a single test pad on a semiconductor substrate.
Abstract:
A microelectronic assembly including a plurality of conductive columns extending from a bond pad of a microelectronic device and a conductive adhesive on a land pad of a carrier substrate electrically attached to the conductive columns.
Abstract:
A method for manufacturing a surface mount solder pad that is adapted to function as a heat sink for an electronic component soldered to the pad. The method comprises a step of providing a printed wiring board having a conductive layer disposed thereon. The method further comprises a step of selecting a size and arrangement of regions of a solder pad so as to sink sufficient heat. The method also comprises removing non-selected regions of the conductive layer to produce solder pads on the surface of the printed wiring board enhanced with features that promote heat transfer to sink enough heat generated by one of the surface mount components to provide for its proper operation.
Abstract:
An impedance-matching electrical connection system, for use with high-frequency communication signals, includes a circuit board and a plurality of contact pads mounted on the circuit board. The contact pads are for coupling with a plurality of complementary connectors of an external electrical device. Each coupling is associated with an excess shunt capacitance. The electrical connection system further includes a plurality of inductive traces mounted on the circuit board, each of which is connected to a respective contact pad, and is associated with a compensating series inductance. Additionally, the electrical connection system includes a plurality of signal lines mounted on the circuit board, each of which is connected to a respective inductive trace. Each inductive trace is configured so that its associated compensating series inductance substantially offsets the excess shunt capacitance associated with the coupling between the contact pad connected to the inductive trace and a complementary connector.