Abstract:
An array of electrodes is constructed to allow the user to easily adjust to the correct size of the patient's head. The array is self-adhesive, pre-gelled and disposable. The array fits easily over the temple and forehead areas where EEG signals can be acquired by specially designed monitors for purposes of monitoring a number of bodily phenomena, including but not limited to, depth of anesthesia, and/or ischemia, and burst suppression. The array is connected to the monitor via a tab connector that is integral to the disposable device. The tab connector is insertible into a reusable connector that is part of a monitoring system.
Abstract:
An array of electrodes is constructed to allow the user to easily adjust to the correct size of the patient's head. The array is self-adhesive, pre-gelled and disposable. The array fits easily over the temple and forehead areas where EEG signals can be acquired by specially designed monitors for purposes of monitoring a number of bodily phenomena, including but not limited to, depth of anesthesia, and/or ischemia, and burst suppression. The array is connected to the monitor via a tab connector that is integral to the disposable device. The tab connector is insertible into a reusable connector that is part of a monitoring system.
Abstract:
An EEG monitor utilizes a portable acquisition module (14) and a substantially stationary processing module (12). The EEG signals are acquired and converted to an oversampled stream of digital signals by a sigma-delta modulator (64) located in the data acquisition module. The signals are then filtered by a decimation filter (62) located in the processing module. Additional means are also provided to monitor the electrode leads to detect when the leads become unplugged. The monitor provides all power to the data acquisition module over a single twisted line which transmits data as well.
Abstract:
Disclosed is a disposable self-prepping electrode (10) which utilizes an array or mat of flexile tines (24) which serve to part the high impendance outer layers of skin to expose the low impendance, blood enriched layers without scratching or abrading. The tines (24) are preferably imbedded in a conductive gel layer (14). In an alternate embodiment, a self-prepping layer of flexile tines (24) embedded in gel (14) may be a single disposable self-prepping layer that is mounted over a permanent electrode (22).
Abstract:
This invention relates to a physiological sensor which acquires pre-programmed data from an electrode or an electrode array using Radio Frequency Identification (RFID) technology. The source of the sensor may be authenticated by means of a wireless interface between an RFID transponder affixed to the electrode array, and an RFID interrogator embedded in the patient interface cable. The criteria for use are then verified to ensure that they are met by the electrode array before beginning signal acquisition. If the criteria are not met, a message is provided to the user via the monitor.
Abstract:
A system and method of identifying and removing artifact from radio frequenc y noise from biopotentials identifies epochs contaminated with radio frequency noise. Contaminated epochs are then replaced with recent uncontaminated epoc hs stored in a buffer, depending on the current level of artifact and the availability of suitable data. Discontinuities arising at the beginning of t he replaced epochs are smoothed by means of a windowing function.
Abstract:
A sensor system which includes a biopotential signal monitor, a smart sensor and the accompanying hardware and software interface which authenticates the source and validity of the smart sensor and also verifies that the smart sensor meets various criteria for use.
Abstract:
A system for measuring bioelectric impedance in real time, in the presence of interference and noise is disclosed. A small electric current is injected into a biopotential electrode system, and then the measurement is tested for contamination by electrical interference or other noise sources.
Abstract:
An array of electrodes is constructed to allow the user to easily adjust to the correct size of the patient's head. The array is self-adhesive, pre-gelled and disposable. The array fits easily over the temple and forehead areas where EEG signals can be acquired by specially designed monitors for purposes of monitoring a number of bodily phenomena, including but not limited to, depth of anesthesia, and/or ischemia, and burst suppression. The array is connected to the monitor via a tab connector that is integral to the disposable device. The tab connector is insertible into a reusable connector that is part of a monitoring system.