Abstract:
본 발명은 블록직교 확장 범직교(transorthogonal) 코드를 파형 부호화로 사용한 다중코드 송신 구조의 디지털 전송방식에서 송신 심볼의 정진폭화를 얻기 위한 정보 데이터열의 부호화 방법 및 그 장치에 관한 것으로서, 상기 전송 장치에 입력되는 정보 데이터의 각 비트열에 대응하여 상기 블록직교 확장 범직교 코드의 각 부집합으로부터 하나의 코드를 선택하는 복수개의 파형부호화기와, 상기 복수개의 파형부호화기에 입력되는 정보 데이터를 부호화하여 잉여 비트열을 생성하는 정보데이터 부호화기와, 상기 정보데이터 부호화기로부터 출력되는 잉여 비트열에 대응하여 상기 블록직교 확장 범직교 코드의 또다른 부집합으로부터 하나의 코드를 선택하는 잉여비트 파형부호화기와, 상기 복수개의 파형부호화기와 상기 잉여비트 파형부호화기로부터 출력되는 코드를 합산하여 출력 심볼을 생성하는 합산기를 포함한다. 그리고, 상기 잉여비트 파형부호화기는 상기 합산기로부터 출력되는 출력 심볼이 정진폭 특성을 갖도록 부호화한다. 본 발명에 따르면, 단일 직교코드 부호화기를 사용한 방식에 비해 대역폭 효율을 크게 개선시킬 수 있으며, 출력 심볼의 진폭이 일정하게 되어 증폭기의 비선형성에 의한 영향을 적게 받는 장점이 있다. 파형부호화, 직교코드, Walsh 코드, Hadamard 행렬, 정 진폭 부호화, transorthogonal 코드, 블록직교 확장 transorthogonal 코드
Abstract:
본 발명은 정 포락선 부호화를 사용한 코드선택 코드분할 다중접속 통신 시스템에서 상관기 출력과 패리티 검사 결과를 이용한 수신 신호의 복조 방법 및 그 장치에 관한 것으로, 보다 자세하게는 잉여 블록의 정보를 활용하여 정보비트의 오류를 정정함으로써 시스템의 비트오율 성능을 개선시키는 코드선택 코드분할 다중접속에서의 복조 방법 및 그 장치에 관한 것이다. 본 발명의 정 포락선 부호화를 사용한 코드선택 코드분할 다중접속 통신 시스템에서 상관기 출력과 패리티 검사 결과를 이용한 수신 신호의 복조 방법은 정 포락선 부호화를 사용한 코드선택 코드분할 다중접속 통신 시스템의 수신 신호의 복조 방법에 있어서, 입력되는 수신 신호를 4개의 블록을 가진 코드선택 코드분할 다중접속 복조기에서 복조하는 단계; 복조된 비트열에 대해 n(n≤N, N은 정보채널수)번째 위치의 4개 비트들의 패리티 검사를 수행하는 단계 및 상기 패리티 검사 결과를 이용하여 출력 신호를 결정하는 단계로 이루어짐에 기술적 특징이 있다. 따라서, 본 발명의 정 포락선 부호화를 사용한 코드선택 코드분할 다중접속 통신 시스템에서 상관기 출력과 패리티 검사 결과를 이용한 수신 신호의 복호화 방법 및 그 장치는 수신기에서 송신기의 신호를 일정 펄스폭으로 만들고 기존의 수신기에서는 사용하지 않는 잉여 블록의 정보를 활용하여 정보비트의 오류를 정정함으로써 시스템의 비트오율 성능을 개선할 수 있으며, 주어진 품질을 얻기 위하여 필요한 송신 에너지를 감소시킬 수 있어 에너지 효율이 향상되는 효과가 있다. 또한 코드선택 코드분할 다중접속에서 포함하고 있는 레벨 클리핑 과정을 제거할 수 있어서 채널간 직교성의 손상 문제가 없고 전력 증폭기의 선형성이 요구되지 않는 효과가 있다.
Abstract:
PURPOSE: A multi-channel wavelength locker and a locking method thereof are provided to perform a wavelength locking operation of multi-channel without accurately control environmental factor, such as temperature. CONSTITUTION: A multi-channel wavelength locker includes a polarization beam splitter(110), a wavelength filter(120), a linear polarizer(130), a plurality of detectors(141,143), and a stabilizer circuit(150). The polarization beam splitter(110) is used for splitting an optical signal into two linear-polarized beams when receiving the optical signal. The wavelength filter(120) is used for transmitting the beams having different polarization according to the wavelengths. The linear polarizer(130) is used for transmitting selectively only the linear-polarized beams from the wavelength filter(120) to a desired optical axis. The detectors(141,143) are used for measuring the intensity of the beams the polarization beam splitter(110) and the linear polarizer(130). The stabilizer circuit(150) is used for comparing the intensity of the beams detected by the detectors(141,143) and outputting a feedback signal to a light source according to the compared result.
Abstract:
The present invention relates to a method of packaging optical parts for optical communication. According to the method of the present invention, there are advantages in that a packaging process for optical parts is automated to improve productivity and to obtain price competitiveness and uniformity of quality, and a high frequency heater for locally transferring heat to only a solder preform is used to minimize thermal deformation of areas except a soldering area, thereby achieving highly reliable packaging of the optical parts.
Abstract:
PURPOSE: A method for hardening an epoxy used in package an optical component and a soldering method are provided to reduce a hardening period and simplify an automation process by removing a process for inserting the optical component into a chamber. CONSTITUTION: An optical component is formed with a fiber pigtail(103), a glass tube(101), and a fiber(104). A thermosetting epoxy(102) is adhered to the optical component by heating and hardening the thermosetting epoxy within a chamber. The fiber pigtail is arranged to adhere the fiber pigtail to a green lens(107) coated by a metal material(106). The thermosetting epoxy is coated on the optical component. The optical component coated with the thermosetting epoxy is located at a high-frequency coil by using a high-frequency device(105).
Abstract:
이 발명의 광 신호 추가 및 추출 장치는 광축으로부터 동일 거리에 서로 대칭되게 위치되어 있으며, 적어도 하나 이상의 광 신호를 전송하는 두 개의 광섬유를 포함하는 제1 및 제2 이심 페룰; 특정 파장의 광 신호만을 선택적으로 투과시키는 파장 분리 필터; 상기 제1 이심 페룰의 하나의 광섬유로부터 입력되는 광 신호를 평행광으로 변환하여 상기 파장 분리 필터의 제1 면으로 출력시키고, 상기 파장 분리 필터로부터 입력되는 광 신호를 집속하여 상기 제1 이심 페룰의 나머지 광섬유로 출력시키는 제1 렌즈; 및 상기 파장 분리 필터로부터 입력되는 광 신호를 집속하여 상기 제2 이심 페룰의 하나의 광섬유로 출력시키고, 상기 제2 이심 페룰의 나머지 광섬유로부터 입력되는 광 신호를 평행광으로 변환하여 상기 파장 분리 필터의 제2 면으로 출력시키는 제2 렌즈; 를 포함하는 광학 단위 소자를 다수개 포함하는 광 신호 합파 및 분리부; 및 상기 광학 단위 소자에 각각 대응되어 연결되어 있으며, 상기 광학 소자로부터 출력되는 광 신호를 추출하거나, 상기 광학 소자로부터 추출된 광 신호와 동일한 광 신호를 상기 광학 단위 소자로 추가하는 스위치를 다수개 포함하는 스위치 모듈을 포함한다. 이와 같은 이 발명의 광 신호 추가 및 추출 장치는 낮은 제조 비용과 작은 크기로 여러 개의 파장을 동시에 추출 및 추가할 수 있다.
Abstract:
PURPOSE: An apparatus for extracting and adding optical wavelengths is provided to extract and add multiple wavelengths with a single device simultaneously. CONSTITUTION: The device includes an optical block(100) passing optical signals with multiple wavelengths, and an input collimator(Pin) for focusing the optical signals with multiple wavelengths and radiating the focused optical signals to the first plane of the optical block. The apparatus also has a set of multiple thin-film filters(F1,F2,...,Fn) which is formed on the first or second plane of the optical block and includes a reflection filter(Fx-1) for reflecting all of input optical signals and a band pass filter(Fx-2) for passing only signals with a specific wavelength band but reflecting other signals, and a plurality of extracting collimators(DP1,DP2,...,DPn) which are formed on the same optical axis as that of the optical signals inputted to the thin-film filter set, and focus and extract the optical signals that pass through the thin-film filter.
Abstract:
이 발명은 광통신용 신호 처리 필터 및 그 제조 방법에 관한 것이다. 롱 패스 필터는 기판 위에 이산화티타늄층과 이산화규소층을 번갈아 총 29층을 적층한 구조이고, 기판 바로 위와 마지막 층, 7번째 및 9번째 층에 적층되는 이산화티타늄층의 두께는 1/2이고, 8번째 적층되는 이산화규소층의 두께는 1/1.05이고, 나머지 이산화규소층와 이산화티타늄층의 두께는 모두 1로 한다. 쇼트 패스 필터는 기판 위에 이산화티타늄층과 이산화규소층을 번갈아 총 27층을 적층한 구조이고, 기판 바로 위에 적층되는 1번째와 3번째, 5번째 및 마지막 층인 27번째에 적층되는 이산화티타늄층의 두께는 1/2이고, 4번째층에 적층되는 이산화규소층의 두께는 1/0.8이고, 나머지 이산화규소층과 이산화티타늄층의 두께는 모두 1이다. 이와 같이 롱 패스 필터와 쇼트 패스 필터를 제작하면, 파장에 대한 광투과율의 감쇠 현상이 줄어들고 해당 파장을 갖는 광신호의 투과성이 향상되어 독립성이 증대되고 전송시 잡음에 의한 오차 발생률이 감소하기 때문에 광신호의 전송 효율이 극대화된다.