Abstract:
본 발명은 CIGS 박막 태양전지에서 무(無)카드뮴 버퍼층으로 인듐 설파이드(In 2 S 3 ) 층을 이용하는 태양전지에 관한 것으로, 용액 성장법을 이용하여 성장하는 버퍼층에 있어서 틴(Sn)이 도핑된 인듐 설파이드 박막을 적층하는 방법 및 이로부터 제조되는 태양전지에 관한 것이다. 본 발명은 틴이 도핑된 인듐 설파이드 박막은 높은 광 투과도를 가지면서 우수한 전기 전도도를 가지게 되고, CIGS와 인듐 설파이드 계면에서 전도대의 에너지 장벽을 낮춤으로써 재결합 손실을 줄이는 등으로 태양전지의 광전기적 특성을 향상시킬 수 있다.
Abstract:
본 발명은 CIGS 박막 태양전지에서 무(無)카드뮴 버퍼층으로 인듐 설파이드(In 2 S 3 ) 층을 이용하는 태양전지에 관한 것으로, 용액 성장법을 이용하여 성장하는 버퍼층에 있어서 틴(Sn)이 도핑된 인듐 설파이드 박막을 적층하는 방법 및 이로부터 제조되는 태양전지에 관한 것이다. 본 발명은 틴이 도핑된 인듐 설파이드 박막은 높은 광 투과도를 가지면서 우수한 전기 전도도를 가지게 되고, CIGS와 인듐 설파이드 계면에서 전도대의 에너지 장벽을 낮춤으로써 재결합 손실을 줄이는 등으로 태양전지의 광전기적 특성을 향상시킬 수 있다.
Abstract:
Provided in the present invention is a stress corrosion resistance evaluation method for stainless steel using an electrochemical test technique. According to an embodiment of the present invention, the stress corrosion resistance evaluation method for stainless steel using an electrochemical test technique comprises as follows: a step of performing a scratch electrode test of a stainless steel specimen by immersing the specimen to be evaluated in an aqueous solution containing chlorine (CL); a step of obtaining a current transient curve of the specimen according to the scratch electrode test of the specimen; a step of obtaining a log i(t) vs. 1/q(t) plot graph from the current transient curve; and a step of evaluating the stress corrosion resistance of the specimen using a gradient value (cBV) of the log i(t) vs. 1/q(t) plot. At this time, Formula Ch_(1), and V: potential drop across film, B: constant associated with ion movement, C: constant, M: molecular weight of the film, and z: valence state.
Abstract:
본 발명은, 분말형태가 아닌 나노선 형태를 가지는 폴리피롤 나노선 및 이의 제조방법에 관한 것이다. 본 발명의 일 측면에 따르면, 서로 연결되어 망사형 구조를 형성하고 있는 폴리피롤 나노선이 제공되며, 폴리피롤 나노선은 각 폴리피롤 나노선 내부 및 표면 상에 결합되어 있는 산화주석 입자를 더 포함할 수 있다. 본 발명에 따르면, 나노선들이 망사형 구조로 상호 연결되어 표면적이 극대화된 구조를 가지고, 기존의 분말형태의 복합체에 비하여 구조적 강도가 우수한 폴리피롤 나노선이 제공될 수 있다.
Abstract:
PURPOSE: A polypyrrole nanowire is provided to offer excellent surface and structure intensity by forming a mash type structure. CONSTITUTION: A polypyrrole nanowire is connected to each other to form a mash type structure. The polypyrrole nanowire contains a tin oxide particle. The tin oxide particle is combined to the inside and the surface of the polypyrrole nanowire forming the mash type structure. The polypyrrole nanowire has the cross-sectional diameter of 60-200 nm, and the average diameter of the tin oxide particle is 2-30 nm. A production method of the polypyrrole nanowire comprises a step of applying negative pressure to an aqueous solution including nitric acid, sodium nitrate, and pyrrole. The aqueous solution contains 0.2-1.6 M of nitric acid, 0.1-1 M of sodium nitrate, and 0.1005 M of pyrrole. The negative pressure is applied in -0.6-(-1.0) VSCE for 5-20 minutes. The temperature of the aqueous solution is maintained at 15-30°C. The aqueous solution additionally contains 0.01-0.1 M of stannic salt. [Reference numerals] (AA) Reduction electrode : Cu foil; (BB) Oxidation electrode : Pt; (CC) Applied voltage: -0.6V_SCE ~ -1.0V_SCE; (DD) Electrodeposition time: 5 min-15 min; (EE) Solution temperature: 15°C-30°C
Abstract:
PURPOSE: A preparing method of LiFePO4/C composite is provided to manufacture a LiFePO4/c composite high tap density and excellent high rate-capacity and to manufacture LiFePO4/C of various particle shapes from LiFePO4 seed crystals of various particle sizes and shapes. CONSTITUTION: A preparing method of LiFePO4/C composite comprises: a step of preparing LiFePO4 seed crystal through a hydrothermal synthesis method, a step of dispersing the LiFePO4 seed crystals into a mixture solution of distilled water and ethanol, and additionally putting FeSO47H2O, LiNO3, NH4H2PO4 and sucrose into, and stirring and mixing the materials; and a step of heating the outcome of the previous step in a nitrogen and hydrogen atmosphere.
Abstract:
A transition metal catalyst which has a high activity on a methanolysis reaction of borohydride, simplifies the catalyst preparation process, and obtains a high bonding force between a substrate and catalyst particles is provided to replace a catalyst of a precious metal such as platinum(Pt) or ruthenium(Ru), and a preparation method of the transition metal catalyst is provided. A transition metal-phosphorous catalyst containing phosphorous is characterized in that the catalyst generates hydrogen by a methanolysis reaction of borohydride. The borohydride is at least one selected from NaBH4, LiBH4, and KBH4. The transition metal in the transition metal-phosphorous catalyst containing phosphorous is at least one selected from cobalt(Co), nickel(Ni), titanium(Ti), vanadium(V), chromium(Cr), manganese(Mn), iron(Fe), copper(Cu), zinc(Zn), and compounds containing the metals. The transition metal-phosphorous catalyst containing phosphorous comprises 1 to 20 wt.% of phosphorous(P). A preparation method of a transition metal-phosphorous catalyst containing phosphorous comprises installing a reduction electrode and an oxidation electrode in an electroplating solution comprising a transition metal source and a phosphorous(P) source, and applying an electric current to the reduction electrode and the oxidation electrode, thereby plating a transition metal support to generate hydrogen from borohydride. A preparation method of a transition metal-phosphorous catalyst containing phosphorous comprises electroless-plating a transition metal support in a solution comprising a transition metal source and a phosphorous(P) source to generate hydrogen from borohydride.
Abstract:
본 발명은 LiFePO 4 전구체와 탄소를 혼합하여 분쇄하는 단계; 및 상기 분쇄물을 마이크로파 가열하여 전극 활물질을 제조하는 단계를 포함하는 리튬이차전지 양극재료용 활물질의 제조방법을 제공한다. 본 발명에 의하면, 활물질의 제조공정시간을 획기적으로 단축할 수 있고, 방전용량 및 수명, 고율방전 특성을 가지는 리튬이차전지 양극재료용 활물질 및 리튬이차전지를 제공하는 것이 가능하다.