Abstract:
A preparation method of surface functionalized porous organic-inorganic hybrid materials that can be used in adsorbents, gas storage bodies, sensors, membranes, functional thin films, catalysts, and catalyst carriers is provided, and a catalyst composition for an acid or base reaction, hydrogenation, dehydrogeneration, a carbon-carbon bonding reaction, or an oxidation reaction by using the surface functionalized porous organic-inorganic hybrid materials or porous organic-inorganic mesoporous materials is provided. A preparation method of surface modified porous organic-inorganic hybrid materials is characterized in that the surface modified porous organic-inorganic hybrid materials are prepared by bonding organic materials, polyoxometalates, ionic liquids, organometallic compounds, or mixtures thereof having functional groups selected from an amino group(-NH2), a thiol group(-SH) and a phosphoric group(-PO(OH)2) to porous organic-inorganic hybrid materials with coordinatively unsaturated metal sites or to coordinatively unsaturated metal sites of porous organic-inorganic mesoporous materials. The porous organic-inorganic hybrid materials are polymer compounds formed by bonding core metal ions to organic ligands and have molecular-sized or mamo-sized pore structures, and the porous organic-inorganic mesoporous materials have coordinatively unsaturated metal sites and pores with a pore size of 2 to 50 nm by substituting dissimilar metals. Core metal precursors of the porous organic-inorganic hybrid materials are one or more metals selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb and Bi, or compounds thereof.
Abstract:
A method for preparing a surface-functionalized porous organic-inorganic hybrid material or mesoporous material is provided to be applicable to an adsorber, a gas storage material, a sensor, a membrane, a functional thin film, a catalyst, a catalyst carrier and the like. A method for preparing a surface-functionalized porous organic-inorganic hybrid material or mesoporous material comprises reaction of porous organic-inorganic hybrid materials having coordinatively unsaturated metal sites with at least one compound selected from silane, an organic metal compound and polyoxometallate. Particularly, the porous organic-inorganic hybrid material is a crystalline polymer compound of a microporous structure, which is formed by combination of a core metal ion thereof with an organic ligand. In the method, the reaction comprises depositing the silane or the organic metal compound onto the porous organic-inorganic hybrid material, or introducing the porous organic-inorganic hybrid material into a solution of the organic metal compound or polyoxometallate.
Abstract:
본발명은 2가주석(Sn2+) 또는납(Pb2+)의아황산계염을촉매로사용하는젖산예비중합체의해중합반응을수행하는단계를포함하는, 광학순도가향상된 L- 또는 D-락타이드의제조방법에관한것이다. 본발명에따른해중합촉매를이용한제조방법은선택적으로광학적순도는높이고자유산도는낮은고순도의락타이드를제공할수 있으므로, 상기제조방법에의해생산된고순도의락타이드는분자량이큰 고급폴리락타이드의생산에유용하게사용될수 있다. 또한, 상기촉매는반복하여사용이가능하므로, 소량의촉매로도락타이드의대량생산이가능하므로, 락타이드합성공정의원가를절감할수 있다.