Abstract:
A broadband pyrometer is used for sensing temperature of a semiconductor wafer in an RTA system in association with a monochromator to cancel the backside characteristics of the semiconductor wafer. A rapid thermal anneal (RTA) system includes a rapid thermal anneal (RTA) chamber, a heating lamp arranged in the vicinity of the RTA chamber for heating interior to the RTA chamber, a broadband pyrometer disposed in the vicinity of the RTA chamber and directed to measure interior to the RTA chamber, and a grating monochromator connected to the broadband pyrometer.
Abstract:
A multilevel interconnect structure (10) is provided. The multilevel interconnect structure includes at least three levels of interconnect (conductors) formed according to one exemplary embodiment. Two of the three levels (12) of conductors are staggered from each other (16) in separate vertical and horizontal planes. A third conductor (16) is advantageously spaced a lateral distance between at least a portion of two second conductors (26). The third conductor is also placed in an elevational level below or possibly above the second conductor so as to reduce the capacitive coupling therebetween. By staggering the second and third conductors, high density interconnect can be achieved with minimal propagation delay and cross coupling.
Abstract:
A method for fabrication of a non-symmetrical LDD-IGFET is described. In one embodiment, the method includes providing a semiconductor substrate having a gate insulator (104) and a gate electrode (106), the gate electrode having opposing first and second sidewalls (103, 105) defining the length of the gate electrode and a top surface. Lightly doped source (108) and drain (110) regions are implanted into the semiconductor substrate and are substantially aligned with the sidewalls of the gate electrode. After implanting the lightly doped regions, first and second spacers (112, 114) are formed adjacent to the first and second sidewalls of the gate electrode. After forming the spacers, a portion of the gate electrode is removed to form a third sidewall (117) of the gate electrode opposite the second sidewall (105), thereby eliminating the first sidewall and reducing the length of the gate electrode. After removing the first spacer, heavily doped source (120) and drain (118) regions are implanted into the semiconductor substrate. The heavily doped drain region is substantially aligned with the outer edge of the second spacer, a portion of the lightly doped drain regions is protected beneath the second spacer, and the heavily doped source region is substantially aligned with the third sidewall. In another embodiment, the heavily doped drain region is implanted after the spacers are formed but before the third sidewall is formed and the heavily doped source region is implanted after forming the third sidewall.
Abstract:
A method of forming a gate electrode for an insulated-gatefield-effectransistor (IGFET) is disclosed. The method includes forming a gate material for providing a gate electrode over a semiconductor substrate, forming a first mask over the gate material wherein the first mask includes an opening that defines a first edge of the gate electrode, removing a first portion of the gate material to form the first edge of the gate electrode as defined by the first mask, forming a second mask over the gate material after removing the first mask wherein the second mask includes an opening that defines a second edge of the gate electrode, removing a second portion of the gate material to form the second edge of the gate electrode as defined by the second mask, and removing the second mask. Thus, the gate electrode is defined by a lateral displacement between the openings in the first and second masks. Preferably, the first and second masks are photoresist, and the length between the first and second edges of the gate electrode is less than the minimum resolution of a photolithographic system used to pattern the masks.
Abstract:
A data prediction structure is provided. The data prediction structure stores base addresses and stride values in a prediction array. The base address and the stride value are added to form a data prediction address which is then used to fetch data bytes into a relatively small, relatively fast buffer which may be accessed by the decode stage(s) of the instruction processing pipeline. If the data associated with an operand address calculated by a decode stage resides in the buffer, the clock cycles used to perform the load operation occur before the instruction reaches the execution stage of the instruction processing pipeline. The execution stage clock cycles that are saved may be used to execute other instructions. Additionally, the base address is updated to the address generated by a decode unit each time a basic block is executed, and the stride value is updated when the data prediction address is found to be incorrect. In this way, the data prediction address may be more accurate than a static data prediction address.
Abstract:
A superscalar microprocessor having an instruction alignment unit, an instruction cache, a plurality of decode units and a predecode unit is provided. The instruction alignment unit transfers a fixed number of instructions from the instruction cache to each of the plurality of decode units. The instructions are selected from a quantity of bytes according to a predecode tag generated by the predecode unit. The predecode tag includes start-byte bits that indicate which bytes within the quantity of bytes are the first byte of an instruction. The instruction alignment unit independently scans a plurality of groups of instruction bytes, selecting start bytes and a plurality of contiguous bytes for each of a plurality of issue positions. Initially, the instruction alignment unit selects a group of issue positions for each of the plurality of groups of instructions. The instruction alignment unit then shifts and merges the independently produced issue positions to produce a final set of issue positions for transfer to the plurality of decode units.
Abstract:
Presented is a telephone calling party announcement system which stores telephone numbers and associated voice messages provided by a user. When an incoming telephone call occurs, and a telephone number of a calling party matches a stored telephone number, an associated stored voice message is played back. Calling party information is provided by Caller ID information transmitted between a first and a second ring signal. If a stored telephone number matches the telephone number portion of the Caller ID information, a stored voice message associated with the telephone number is played back between (or in place of) subsequent ring signals. The stored voice message is typically the name of the calling party, and in this case the name of the calling party is announced between ring signals. A first embodiment includes a voice message unit which receives, stores, and plays back voice messages provided by the user. A caller ID decoder decodes the Caller ID information and provides the decoded Caller ID information to a control unit. The control unit compares the telephone number portion of the decoded Caller ID information to telephone numbers stored in a control memory unit. If a match is found, the control unit asserts a playback control signal which causes the voice message unit to play back an associated stored voice message. In a second embodiment, a digital signal processor (DSP) performs many of the functions of the voice message unit and the caller ID decoder of the first embodiment.
Abstract:
The present invention facilitates programming of selected floating gate devices while successfully inhibiting the programming of unselected devices, without the need for growing multiple thicknesses of oxides. The preferred embodiment of the present invention utilizes a multiple select gate device. In particular, the select gate device is preferably a dual floating gate device rather than the conventional transistor (or device functioning as a conventional transistor) used in the current Flash memory systems as a select gate device.
Abstract:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors (14, 16), wherein conductors (14) on one level are staggered with respect to conductors (11) on another level. Accordingly, a space (32, 34) between conductors on one level is directly above or directly below a conductor within another level. The staggered interconnect lines are advantageously used in densely spaced regions to reduce the interlevel and intralevel capacitance. Furthermore, an interlevel and an intralevel dielectric structure includes optimally placed low K dielectrics (24) which exist in critical spaced areas to minimize capacitive coupling and propagation delay problems. The low K dielectric, according to one embodiment, includes a capping dielectric which is used to prevent corrosion on adjacent metallic conductors, and serves as an etch stop when conductors are patterned. The capping dielectric further minimizes the overal intrinsic stress of the resulting intralevel and interlevel dielectric structure.
Abstract:
A multilevel interconnect structure is provided. The multilevel interconnect structure includes two, three or more levels of conductors formed according to at least two exemplary embodiments. According to one embodiment, the contact structure which links conductors (12) on one level to an underlying level is formed by a single via etch step followed by a fill step separate from a fill step used in filling the via. In this embodiment, the via (24) is filled with a conductive material (30) which forms a plug separate from the material (14) used in forming the interconnect. In another exemplary embodiment, the step used in filling the via can be the same as that used in forming the interconnect. In either instance, a via is formed through a first dielectric (22) to underlying conductors. A second dielectric (36) is patterned upon the first dielectric and serves to laterally bound the fill material used in producing the overlying interconnect. Regardless of the process sequence chosen, the interlevel dielectric structure (36) is left substantially planar in readiness for subsequent interconnect levels dielectrically deposited thereon.