Abstract:
A user equipment (UE) is configured to communicate with a further UE via a sidelink (SL). The UE encodes traffic for transmission to the further UE, wherein the traffic comprises a payload and a medium access control (MAC) subheader, wherein the MAC subheader indicates whether the payload corresponds to non-routed traffic between the UE and the further UE or routed traffic between either one of the UE or the further UE and a base station, wherein an other one of the UE or the further UE functions as a relay for the routed traffic and transmits the traffic.
Abstract:
This disclosure relates to techniques for providing bearer configuration information for relay communication by a relay wireless device in communication with one or more remote wireless devices in a wireless communication system. A network may provide bearer configuration information to the wireless devices to establish one or more bearers for data forwarding. Based on the bearer configuration information, the relay wireless device may forward data to/from the remote wireless device(s) using the bearer(s).
Abstract:
This disclosure relates to methods and devices for mitigating overheating in a user equipment device (UE). The UE is configured to communicate over each of LTE and 5G NR and may be configured to communicate through 5G NR over each of a Sub-6GHz and a millimeter Wave (mmW) frequency band. The UE is configured to establish an ENDC connection with an enB and one or more gNBs. The UE implements intelligent transmission modification and cell measurement adjustments to mitigate overheating and reduce battery drain.
Abstract:
A method performed by a user equipment (UE) configured with an uplink and a sidelink. The method includes determining that a first set of data is to be transmitted in the uplink, assigning a priority value to the first set of data, determining that a second set of data is to be transmitted in the sidelink, assigning a priority value to the second set of data, determining that the first and second set of data are to be transmitted using a same resource at a same time, selecting one of the first set of data or the second set of data to be transmitted first based on at least the first priority value and the second priority value and when the first set of data that is to be transmitted in the uplink is selected, transmitting the first set of data prior to transmitting the second set of data.
Abstract:
Embodiments are presented herein of apparatuses, systems, and methods for a C-V2X capable wireless device configured to operate according to a first sidelink mode where communication resources are allocated by a network and a second sidelink mode where communication resources are autonomously allocated by the wireless device. The wireless device detects a change in a coverage scenario associated with the first sidelink mode; performs resource sensing for the second sidelink mode; and based at least in part on detecting the change in the coverage scenario, transmits first communications using the second sidelink mode, wherein resources for transmitting the first communications are allocated based at least in part on the resource sensing.
Abstract:
This disclosure relates to detecting duplicate public warning system messages in a cellular communication system. A wireless device may receive a public warning system indication from a cellular base station during a paging occasion. The public warning system indication may indicate that system information provided by the cellular base station includes a public warning system message. The wireless device may determine whether the public warning system message is a duplicate public warning system message. The wireless device may determine whether to decode the system information including the public warning system message based at least in part on whether the public warning system message is a duplicate public warning system message. The system information including the public warning system message may not be decoded if the public warning system message is determined to be a duplicate public warning system message.
Abstract:
A transmitter (e.g. a packet data convergence protocol, PDCP, in the transmitter), which may be a base station for downlink communications or a user equipment device for uplink communications, may control timing of the delivery of duplicate (same) packets to multiple (e.g. two) wireless links (e.g. radio link control links) for transmission to a receiver, based at least on synchronization information received from the receiver. The duplicate packets may be transmitted over the multiple wireless links to the receiver, which may receive the duplicate packets over the multiple wireless links. The receiver may collect and/or generate synchronization information indicative of the timing or latency between the multiple wireless links, based at least on the respective receive timings of the duplicate packets over the multiple wireless links. The receiver may transmit a report containing the synchronization information to the transmitter periodically and/or in response to a trigger event.
Abstract:
A connection with a network that includes a base station (BS) may be established by a user device (UE) via a wireless connection, for conducting communications using semi persistent scheduling (SPS) in a connected discontinuous reception (C-DRX) mode. The SPS transmit periodicity may be adjusted with respect to the SPS activation command and the SPS interval UL (for uplink). Data may then be transmitted during the C-DRX On-Duration periods according to the determined SPS transmit periodicity. In some embodiments, the SPS transmit periodicity is adjusted such that following a first C-DRX On-Duration period when an SPS activation command is received, SPS data transmission occurs a specified number of subframes earlier during each subsequent C-DRX On-Duration period than in the first C-DRX On-Duration period. The SPS data transmission in each subsequent C-DRX On-Duration period may take place as soon as the UE device wakes up during the On-Duration period.
Abstract:
The present application relates to devices and components including apparatus, systems, and methods for integrated access and backhaul radio link failure and handover scenarios in wireless communication systems.
Abstract:
Provided is a method for a user equipment (UE), comprising: receiving request for scheduling assistance from a base station, wherein the request for scheduling assistance comprises scheduling configuration to be applied to a set of flows of a scheduled terminal on an application layer; informing the scheduled terminal of the scheduling configuration; receiving scheduling assistance information from the scheduled terminal, wherein the scheduling assistance information is generated by the scheduled terminal based on the set of flows of the scheduled terminal on the application layer; and transmitting the scheduling assistance information to the base station.