Abstract:
The present invention discloses a transferring method, a manufacturing method, a device and an electronic apparatus of micro-LED. The method for transferring micro-LED comprises: forming a micro-LED on a laser-transparent original substrate; bringing the micro-LED into contact with a pad preset on a receiving substrate; and irradiating the original substrate with laser from the original substrate side to lift-off the micro-LED from the original substrate.
Abstract:
The disclosure provides a MEMS device. The MEMS device comprises a printed circuit board, a cover attached to the printed circuit board to form a housing, at least one sound hole formed in the housing, a transducer with a diaphragm inside the housing, and at least one shutter structure. Each shutter structure is mounted to the housing around a respective sound hole. Each shutter structure comprises a moveable component disposed near the inner surface of the housing, the moveable component remains at an open position under regular pressure such that an air flow path from the sound hole to the at least one ventilation hole of the substrate across the moveable component is opened, and moves to a first closed position under a high external pressure to block the at least one ventilation hole and close the air flow path.
Abstract:
The present invention discloses a MEMS microphone, which comprises a substrate, a first vibrating diaphragm and a second vibrating diaphragm. A sealed cavity is formed between the first vibrating diaphragm and the second vibrating diaphragm. A back electrode unit is located in the sealed cavity, forms a capacitor structure with the first vibrating diaphragm and with the second vibrating diaphragm respectively, and is provided with a plurality of through holes that penetrate through two sides thereof. The sealed cavity is filled with a gas whose viscosity coefficient is smaller than that of air. According to the MEMS microphone disclosed by the present invention, by filling the sealed cavity with a gas whose viscosity coefficient is smaller than that of air, the acoustic resistance when the two vibrating diaphragms move relative to the back electrode can be reduced greatly, thereby reducing the noise of the microphone. Meanwhile, by the use of a gas with a low viscosity coefficient for filling, the pressure in the sealed cavity is consistent with the pressure of an external environment, thereby avoiding the problem of vibrating diaphragm deflection caused by pressure difference and ensuring the performances of the microphone.
Abstract:
A transferring method, a manufacturing method, a device and an electronic apparatus of micro-LED (402) are disclosed. The method for transferring micro-LED (402) comprises: transferring at least one micro-LED (402) from an original substrate (406) to a support body (412); transferring the at least one micro-LED (402) from the support body (412) to a backup substrate (415); and transferring the at least one micro-LED (402) from the backup substrate (415) to a receiving substrate (417).
Abstract:
The present invention discloses a transferring method, a manufacturing method, a device and an electronics apparatus of micro-LED. The method for transferring micro-LEDs comprises: forming a mask layer on the backside of a laser-transparent original substrate, wherein micro-LEDs are formed on the front-side of the original substrate; bringing the micro-LEDs on the original substrate in contact with preset pads on a receiving substrate; and irradiating the original substrate from the original substrate side with laser through the mask layer, to lift-off micro-LEDs from the original substrate.