Abstract:
A method of coating a substrate comprises the steps of: (a) providing a substrate in an enclosed vessel, the substrate having a surface portion; (b) at least partially filling the enclosed vessel with a first supercritical fluid so that said first supercritical fluid contacts the surface portion, with the first supercritical fluid carrying or containing a coating component; then (c) adding a separate compressed gas atmosphere to the reaction vessel so that a boundary is formed between the first supercritical fluid and the separate compressed gas atmosphere, said separate compressed gas atmosphere having a density less than said first supercritical fluid; and then (d) displacing said first supercritical fluid from said vessel by continuing adding said separate compressed gas atmosphere to said vessel so that said boundary moves across said surface portion and a thin film of coating component is deposited on said microelectronic substrate.
Abstract:
The present invention provides a dry cleaning process that facilitates distribution of detergent and solvent and (optionally) facilitates recovery of cleaning by-products in conjunction with the cleaning of articles at a dry cleaning facility. The proces comprises the steps of: (a) receiving from a source a dry cleaning solvent at the dry cleaning facility, the solvent consisting essentially of carbon dioxide; (b) receiving a concentrated detergent formulation (preferably a liquid formulation) at the cleaning facility; (c) accepting from customers soiled articles to be cleaned at the cleaning facility; (d) mixing the dry cleaning solvent and the concentrated detergent formulation to provide a dry cleaning formulation comprised of from 30 or 40 to 99 percent by weight of carbon dioxide solvent; (e) cleaning the articles in a cleaning apparatus to produce cleaned articles; (f) at least periodically distilling the dry cleaning formulation to produce a still residue comprising surfactant and soil; and then (g) returning the cleaned articles to the customers. Optionally but preferably, the process further comprises the step of: (h) returning the still residue to a waste collector or reprocessor for suitable disposal.
Abstract:
Processing systems employing one or more divided pressure vessels (653) are described. These systems may allow for multiple solvent baths each having a different chemical composition to be stored and/or processed in a single pressure vessel (653) while maintaining the different chemical compositions of the multiple solvent baths. Thus, such systems employing one or more divided pressure vessels (653) may provide the improved operational efficiency of a carbon dioxide based system having multiple solvent baths while decreasing the capital costs that may be associated with such systems.
Abstract:
A system for the controlled addition of detergent formulations and the like to a carbon dioxide cleaning apparatus comprises: (a) a high pressure wash vessel; (b) an auxiliary vessel; (c) a drain line connecting the auxiliary vessel to the wash vessel; (d) optionally but preferably, a separate vent line connecting the auxiliary vessel to the wash vessel; (e) a detergent reservoir; and (f) a detergent supply line connecting the detergent reservoir to the auxiliary vessel. An advantage of this apparatus is that, because the detergent formulation can be pumped into the auxiliary vessel in a predetermined aliquot or amount, which predetermined aliquot or amount can then be transferred into the wash vessel where it combines with the liquid carbon dioxide cleaning solution, the detergent formulation can be added to the cleaning solution in a more controlled or accurate manner. An alternate embodiment adapted for the addition of aqueous detergent formulations and the like to a carbon dioxide dry cleaning system under turbulent conditions comprises: (a) a high pressure wash vessel; (b) a filter; (c) a carbon dioxide cleaning solution drain line interconnecting the wash vessel to the filter; (d) a carbon dioxide cleaning solution supply line connecting the filter to the wash vessel; (e) a first high pressure pump (i.e., a pump that is capable of pumping liquid solutions comprising liquid carbon dioxide) operably connected to the drain line; (f) a detergent formulation reservoir; (g) a detergent formulation supply line connecting the reservoir to the carbon dioxide cleaning solution supply line; and (h) a second high pressure pump operably connected to the detergent formulation supply line for transferring detergent formulation from the detergent formulation reservoir into the carbon dioxide cleaning solution under turbulent conditions.
Abstract:
A method of coating a substrate comprises the steps of: (a) providing a substrate in an enclosed vessel, the substrate having a surface portion; (b) at least partially filling the enclosed vessel with a first supercritical fluid so that said first supercritical fluid contacts the surface portion, with the first supercritical fluid carrying or containing a coating component; then (c) adding a separate compressed gas atmosphere to the reaction vessel so that a boundary is formed between the first supercritical fluid and the separate compressed gas atmosphere, said separate compressed gas atmosphere having a density less than said first supercritical fluid; and then (d) displacing said first supercritical fluid from said vessel by continuing adding said separate compressed gas atmosphere to said vessel so that said boundary moves across said surface portion and a thin film of coating component is deposited on said microelectronic substrate.
Abstract:
Compositions useful for cleaning metal from a substrate or coating metal onto a substrate are described: Such compositions comprise (a) a densified carbon dioxide continuous phase; (b) a polar discrete phase in said carbon dioxide continuous phase; (c) a metal in said discrete phase (i.e., a metal removed from the substrate, or to be coated onto the substrate); (d) at least one ligand in said continuous phase, said discrete phase, or both said continuous and said discrete phase.
Abstract:
A method for dry-cleaning articles such as fabrics and clothing in carbon dioxide. The article includes a stained portion or region, which is pretreat ed with a pretreatment composition prior to initiating the cleaning cycle. The pretreatment step is followed by contacting the pretreated article to be cleaned with a liquid dry cleaning composition for a time sufficient to clea n the article. The liquid dry-cleaning composition comprises a mixture of carb on dioxide, a surfactant, and an organic co-solvent. After the contacting step, the article is separated from the liquid dry cleaning composition. The pretreatment composition, in a preferred embodiment, comprises at least one of (a) a surfactant; (b) d-limonene, and (c) a C12-C15 alkane co-solvent. Preferably the pretreatment composition comprises at least two, and in some particularly preferred embodiments, the pretreatment composition comprises a ll three, of the aforesaid ingredients.
Abstract:
A method of treating a dielectric surface portion of a semiconductor substrate, comprising the steps of: (a) providing a semiconductor substrate having a dielectric surface portion; and then (b) treating said dielectric surface portion with a coating reagent, the coating reagent comprising a reactive group coupled to a coordinating group, with the coordinating group having a metal bound thereto, so that the metal is deposited on the dielectric surface portion to produce a surface portion treated with a metal.