Abstract:
Systems and methods are provided for determining the position of sensor elements in a sensor system. The sensor system includes a plurality of sensor elements. The platform comprises a plurality of MEMS IMUs, each associated with one of the sensor elements, measuring the acceleration and angular rate of the sensor elements. A controller determines the position and attitude of the sensor elements, based on the acceleration and angular rate measured by each of the MEMS IMUs.
Abstract:
The present invention provides a 3D System (“3DS”) MEMS architecture that enables the integration of MEMS devices with IC chips to form a System on Chip (SoC) or System in Package (SiP). The integrated MEMS system comprises at least one MEMS chip, including MEMS transducers, and at least one IC chip, including not only MEMS processing circuitry, but also additional/auxiliary circuitry to process auxiliary signals. The MEMS chip can include first and second insulated conducting pathways. The first pathways conduct the MEMS-signals between the transducers and the IC chip, for processing; and the second conducting pathways can extend through the entire thickness of the MEMS chip, to conduct auxiliary signals, such as power, RF, I/Os, to the IC chip, to be processed the additional circuitry.
Abstract:
A micro-electro-mechanical system (MEMS) device and a manufacturing method are provided. The device includes top and bottom cap wafers and a MEMS wafer disposed between the top cap wafer and the bottom cap wafer. The top, bottom and MEMS wafers define sidewalls of a cavity. A MEMS structure is housed within the cavity and is movable relative to the top and bottom caps. At least one electrode is provided in one of the wafers, the electrode being operatively coupled to the MEMS structure to detect or induce a movement thereof. A support structure extends through the cavity from the top cap wafer to the bottom cap wafer to prevent bowing in the top cap and bottom cap wafers.