Abstract:
In one aspect, a method, a computer-readable medium, and an apparatus for wireless communication are provided. The apparatus may be a base station. The apparatus may determine a duration of an uplink message that is to be sent from a UE. The apparatus may inform the UE regarding the duration of the uplink message through a random-access response message.
Abstract:
Systems, methods and apparatus select a code book based on channel conditions and performance of a demodulator or demapper in a wireless receiver. The method may include determining that the receiver in a first wireless communication apparatus is configured for iteratively processing signals received from a channel, selecting a code book for use in communicating over the channel based on conditions affecting transmission of the signals through the channel and performance information associated with a demapper in the receiver, and identifying the selected code book in one or more control channels transmitted to a second wireless communication apparatus.
Abstract:
Techniques are described for wireless communication. A method for wireless communication at a user equipment (UE) includes identifying a transmission timing of a control reference signal transmitted over a radio frequency spectrum band during an OFF duration of the UE with respect to the radio frequency spectrum band, in which the identified transmission timing is relative to a transition from the OFF duration to an ON duration of the UE with respect to the radio frequency spectrum band; receiving the control reference signal at the identified transmission timing; and performing a warm-up procedure, before the ON duration, based at least in part on the identified transmission timing of the control reference signal. A method for wireless communication at a wireless network includes indicating, to the UE, the transmission timing of the control reference signal; and transmitting the control reference signal at the indicated transmission timing. The OFF duration and the ON duration are coordinated with a wireless network.
Abstract:
Aspects of frequency error detection with Physical Broadcast CHannel (PBCH) frequency hypothesis are described. For example, a method and apparatus are disclosed for frequency tracking in a user equipment (UE) may include detecting a change in frequency that exceeds a pull-in range of a frequency tracking loop (FTL) of the UE. The method and apparatus may also include identifying a tracking recovery frequency in response to the change in frequency being detected, wherein the tracking recover frequency is identified from a set of frequency hypotheses and based on decoding of the PBCH received by the UE. The method and apparatus may further include updating the FTL with the tracking recovery frequency.
Abstract:
Systems and techniques for gain control include amplifying a signal with an amplifier having a gain represented by one of a plurality of gain curves depending on a value of a parameter, the signal being amplified at a first one of the parameter values, and controlling the gain of the amplified signal from a predetermined gain curve relating to the gain curve of the amplifier for a second one of the parameter values by adjusting a gain control signal corresponding to a point on the predetermined gain curve as a function of the first one of the parameter values, and applying the adjusted gain control signal to the amplifier. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
Abstract:
Various techniques for improving a wireless communication device are described. The techniques may include reducing power in a wireless communication device for a first sleep period and then increasing power in the wireless communication device for an intermediate wake period after the first sleep period to estimate an error of the sleep clock. The method may further include reducing power in the wireless communication device for a second sleep period after the intermediate wake period. The intermediate wake mode implemented during the intermediate period can be used to estimate the error of the sleep clock without performing one or more tasks associated with an awake mode, such as demodulation. The techniques may facilitate the effective use of low frequency low power clocks for sleep mode, even when relatively large slot cycles are defined within a slotted paging system.
Abstract:
A direct downconversion receiver architecture having a DC loop to remove DC offset from the signal components, a digital variable gain amplifier (DVGA) to provide a range of gains, an automatic gain control (AGC) loop to provide gain control for the DVGA and RF/analog circuitry, and a serial bus interface (SBI) unit to provide controls for the RF/analog circuitry via a serial bus. The DVGA may be advantageously designed and located as described herein. The operating mode of the VGA loop may be selected based on the operating mode of the DC loop, since these two loops interact with one another. The duration of time the DC loop is operated in an acquisition mode may be selected to be inversely proportional to the DC loop bandwidth in the acquisition mode. The controls for some or all of the RF/analog circuitry may be provided via the serial bus.
Abstract:
A frequency error in the oscillation frequency of a local frequency generation loop causes a change in the baseband input signal frequency. The change in the baseband input signal frequency related to the frequency error in the local frequency generation loop can be detected as a phase rotation by the frequency error discriminator. By using the digital automatic frequency control loop, the frequency error introduced by the local frequency generation is determined with accuracy. The frequency error and corresponding control bits are entered into a calibration table. The calibration table may be use to adjust the local oscillation frequency for temperature changes, pilot frequency searching, and quick paging.
Abstract:
In certain aspects, a method implemented in a wireless device includes determining a specific absorption rate (SAR) distribution for a first wireless communication technology, determining a power density (PD) distribution for a second wireless communication technology, and combining the SAR distribution and the PD distribution to generate a combined RF exposure distribution. The method also includes determining at least one first maximum allowable power level and at least one second maximum allowable power level for a future time slot based on the combined RF exposure distribution, setting at least one transmission power limit for a first transmitter in the future time slot based on the at least one first maximum allowable power level, and setting at least one transmission power limit for a second transmitter in the future time slot based on the at least one second maximum allowable power level.