Abstract:
Polymer-based biomaterials are popular due to ease of fabrication and low costs. However, many polymer substrates have undesirable surface properties. The invention provides a procedure to covalently apply a graft polymer to the surface of a polymer substrate by ultraviolet graft polymerization. The graft polymer is formed from monomers such as PEG, AA, monomethoxy acrylate PEG, HEMA, or DMA. Also, mixed monomers may be used to create the graft and the surface properties of the graft may be tailored for different properties, including hydrophobicity, friction coefficient, electroosmotic mobilities and electrophoretic separations. The invention has particular utility in tailoring surface chemistries in ocular lenses and polymer microdevices. I. II. R: -OH Acrylic Acid(AA) -NH 2 Acrylamide (AM) -N(CH 3 ) 2 Dimethylacrylamide (DMA) -OCH 2 CH 2 OH 2-Hydroxyethylacrylate (HEA) -O(CH 2 CH 2 O) n CH 3 PEG monomethyoxylacrylate (PEG)
Abstract:
A plate manufactured to enable samples of cells, micro-organisms, proteins, DNA, biomolecules and other biological media to be positioned at specific locations or sites on the plate for the purpose of performing addressable analyses on the samples. Preferably, some or all of the sites are built from a removable material or as pallets so that a subset of the samples of interest can be readily isolated from the plate for further processing or analysis. The plate can contain structures or chemical treatments that enhance or promote the attachment and/or function of the samples, and that promote or assist in their analyses.
Abstract:
Provided herein is a power amplifier (100) having a multiple stage power amplifier section (102) and an output matching network section (103).The multiple stage power amplifier section (102) can include multiple power amplifier stage with interstage matching circuits located therebetween. The output matching network (103) can be configured to match the multiple stage power amplifier section (102) at multiple different frequencies or frequency bands. The power amplifier device is capable of selective operation within one of multiple different frequencies or frequency bands.
Abstract:
Provided herein is a power amplifier having a multiple stage power amplifier section and an output matching network section. The multiple stage power amplifier section can include multiple power amplifier stages with interstage matching circuits located therebetween. The output matching network can be configured to match the multiple stage power amplifier section at multiple different frequencies or frequency bands. The power amplifier device is capable of selective operation within one of multiple different frequencies or frequency bands.
Abstract:
The invention provides apparatus and methods for subsecond lysis of selected cells (58) in a cell chamber (10) using a voltage pulse of 10 ms to 10 µs in duration followed by nearly simultaneous collection of the lysed cellular contents (59) into a capillary electrophoresis tube (42) or other suitable micro-collection device (15). Cell chambers (10) and capillary electrophoresis (42) tubes configured with electrodes (18, 19) for performing the electrical lysis are described. The influence of variables that govern the rate of cell lysis, such as the inter-electrode distance, pulse duration, and pulse strength are also described. The methods are illustrated using fluorophores that are loaded into a cell (10) and then collected following electrical lysis, separated by electrophoresis, and then detected by laser-induced fluorescence detection in a capillary electrophoresis system.
Abstract:
A miniature wireless pressure sensor has an inductor and a capacitor. The inductor and the capacitor form a L-C resonator with a resonate frequency. The inductor's inductance is affected by a slidable electro-magnetic element. When an outside pressure is applied onto the element, it causes the element to move and such movement changes the inductance of the inductor. Because of that, the resonate frequency is changed. Therefore, the change in resonate frequency indicates a change in the outside pressure. The L-C resonator is calibrated to correlate with the outside pressure. Such a miniature wireless pressure sensor facilitates the monitoring of physiological pressure in different part of human body such as eyes and cranium.
Abstract:
Systems and methods for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate (6) with regions (16) that will trap gas, usually in the form of bubbles (10), when the plate (6) is submerged in liquid. Other embodiments of the present invention include a method for placing materials on the plate (6) at predetermined locations through the use of trapped gas to prevent materials from collecting at unwante regions. The plate (6) has great utility for plating cells and tissues (5) at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate (6) at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micromechanical structures where the structures may be formed from living or nonliving material, organic or inorganic, and the like.
Abstract:
Systems and methods are provided for patterning biological and non-biological material at specific sites on a plate, as well as growing three dimensional structures. Preferred embodiments comprise a plate with regions that will trap gas, usually in the form of bubbles, when the plate is submerged in liquid. Other embodiment of the present invention include a method for placing materials on the plate at pre-determined locations through the use of trapped gas to prevent materials from collecting at unwanted regions. The plate has great utility for plating cells and tissues at specific sites, such as on an array. The disclosed method can also be used to coat the surface of a plate with coatings at specific locations for patterned coating applications and to build up materials to produce three dimensional structures, including micro-mechanical structures—where the structures may be formed from living or non-living material, tissue or non-tissue, organic or inorganic, and the like.
Abstract:
A plate manufactured to enable samples of cells, micro-organisms, proteins, DNA, biomolecules and other biological media to be positioned at specific locations or sites on the plate for the purpose of performing addressable analyses on the samples. Preferably, some or all of the sites are built from a removable material or as pallets so that a subset of the samples of interest can be readily isolated from the plate for further processing or analysis. T he plate can contain structures or chemical treatments that enhance or promote the attachment and/or function of the samples, and that promote or assist in their analyses. Use of the plate advantageously enables the selection and sorting of cells based on dynamic phenomena and the rapid establishment of stable tranfectants.
Abstract:
Una placa fabricada para permitir que muestras de celulas, microorganismos, proteinas, ADN, biomoleculas y otros medios biologicos se coloquen en ubicaciones o sitios especificos sobre la placa con el proposito de realizar analisis direccionables en las muestras; de preferencia, algunos o todos los sitios se construyen a partir de un material removible o como tarimas para que un subconjunto de las muestras de interes se pueda aislar facilmente de la placa para procesamiento o analisis posterior; la placa puede contener estructuras o tratamientos quimicos que mejoran o promueven la fijacion y/o funcion de las muestras, y que promueven o ayudan en sus analisis.