Abstract:
To provide quartz-type glass for a microlithographic projection exposure apparatus, which contains at least 51 mass% of SiO2 and which further contains at least one member selected from the group consisting of lanthanum, aluminum, hafnium, nitrogen, scandium, yttrium and zirconium. It is a material which is useful for an illumination system for a microlithographic projection exposure apparatus or as a projection object lens and has a refractive index at 248 nm larger than 1.508 of quartz glass and a refractive index at 193 nm larger than 1.560 of quartz glass and which can be small-sized.
Abstract:
To provide an optical component of quartz glass for use in a projection objective for immersion lithography at an operating wavelength below 250 nm, which component is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should contain hydroxyl groups in the range of from 1 wtppm to 60 wtppm and chemically bound nitrogen, and that the mean hydrogen content of the quartz glass should be in the range of 5 x 1015 molecules/cm3 to 1 x 1017 molecules/cm3.
Abstract:
To provide an optical component of quartz glass for use in a projection objective for immersion lithography at an operating wavelength below 250 nm, which component is optimized for use with linearly polarized UV laser radiation and particularly with respect to compaction and birefringence induced by anisotropic density change, it is suggested according to the invention that the quartz glass should contain hydroxyl groups in the range of from 1 wtppm to 60 wtppm and chemically bound nitrogen, and that the mean hydrogen content of the quartz glass should be in the range of 5×1015 molecules/cm to 1×1017 molecules/cm3.
Abstract translation:为了提供石英玻璃的光学部件,用于在250nm以下的工作波长下用于浸没式光刻的投影物镜,该成分被优化用于线偏振UV激光辐射,特别是关于由各向异性密度变化引起的压实和双折射 根据本发明,建议石英玻璃应含有1〜60重量ppm的羟基和化学键合的氮,石英玻璃的平均氢含量应在5×1015的范围内 分子/ cm至1×1017分子/ cm 3。
Abstract:
To provide quartz-type glass for a microlithographic projection exposure apparatus, which contains at least 51 mass % of SiO2 and which further contains at least one member selected from the group consisting of lanthanum, aluminum, hafnium, nitrogen, scandium, yttrium and zirconium. It is a material which is useful for an illumination system for a microlithographic projection exposure apparatus or as a projection object lens and has a refractive index at 248 nm larger than 1.508 of quartz glass and a refractive index at 193 nm larger than 1.560 of quartz glass and which can be small-sized.
Abstract:
A modified silica glass composition for providing a reduction in the multiphonon quenching for a rare-earth dopant comprising: SiO2 in a host material; a rare-earth dopant; a first SiO2 modifier; and a second SiO2 modifier; such that said first modifier and said second modifier reduce multiphonon quenching of the rare-earth dopant contained therein.
Abstract:
This invention relates to the immobilization of toxic, e.g., radioactive materials, internally in a silicate glass or silica gel matrix for extremely long periods of time. Toxic materials, such as radioactive wastes containing radioactive anions, and in some cases cations, which may be in the form of liquids, or solids dissolved or dispersed in liquids or gases, are internally incorporated into a glass matrix, having hydrous organofunctionalsiloxy groups, e.g., hydrous aminoalkylsiloxy or carboxyorganosiloxy, bonded to silicon atoms of said glass and/or hydrous polyvalent metals bonded to silicon atoms of said glass through divalent oxygen linkages or otherwise immobilized therein, by a process which involves the ion exchange of said toxic, radioactive anions with hydroxyl groups attached to said organofunctionalsiloxy groups or with hydroxyl groups attached to the hydrous polyvalent metal. Thereafter, the resulting glass now characterized by a distribution of internally bonded or immobilized, toxic, radioactive anions can be packaged in suitable containers, and disposed of as by burial, and/or they can be sintered to collapse the pores thereof to disposal or for producing useful radiation sources. The porous glass or a porous silica gel having said silicon-bonded organofunctionalsiloxy groups and/or said hydrous polyvalent metal oxy groups, the pores of said glass or silica gel remaining open and uncollapsed, can be used advantageously as a backfill for an underground radioactive waste burial site and as overpack in the waste disposal container. Also included is a novel method for bonding the polyvalent metal to the porous silica glass or gel by substituting the protons of the silicon-bonded hydroxyl groups thereof with an alkali metal or ammonium cation followed by displacement of said cation with the non-radioactive polyvalent metal cation.
Abstract:
This invention relates to the immobilization of toxic, e.g., radioactive materials, internally in a silicate glass or silica gel matrix for extremely long periods of time. Toxic materials, such as radioactive wastes containing radioactive anions, and in some cases cations, which may be in the form of liquids, or solids dissolved or dispersed in liquids or gases, are internally incorporated into a glass matrix, having hydrous organofunctionalsiloxy groups, e.g., hydrous aminoalkylsiloxy or carboxyorganosiloxy, bonded to silicon atoms of said glass and/or hydrous polyvalent metals bonded to silicon atoms of said glass through divalent oxygen linkages or otherwise immobilized therein, by a process which involves the ion exchange of said toxic, radioactive anions with hydroxyl groups attached to said organofunctionalsiloxy groups or with hydroxyl groups attached to the hydrous polyvalent metal. Thereafter, the resulting glass now characterized by a distribution of internally bonded or immobilized, toxic, radioactive anions can be packaged in suitable containers, and disposed of as by burial, and/or they can be sintered to collapse the pores thereof prior to disposal or for producing useful radiation sources. The porous glass or a porous silica gel having said silicon-bonded organofunctionalsiloxy groups and/or said hydrous polyvalent metal oxy groups, the pores of said glass or silica gel remaining open and uncollapsed, can be used advantageously as a backfill for an underground radioactive waste burial site and as overpack in the waste disposal container. Also included is a novel method for bonding the polyvalent metal to the porous silica glass or gel by substituting the protons of the silicon-bonded hydroxyl groups thereof with an alkali metal or ammonium cation followed by displacement of said cation with the non-radioactive polyvalent metal cation.
Abstract:
PROBLEM TO BE SOLVED: To provide quartz glass used for semiconductor manufacture and having excellent corrosion resistance to plasma, a quartz glass tool, a method of manufacturing the quartz glass, mixed quartz powder suitably used for the manufacture of the quartz glass and a method of manufacturing the mixed quartz powder. SOLUTION: The quartz glass contains 0.1 to 20 mass% in total of two or more of dope elements. The dope element contains one or more of first elements selected from the group composed of N, C and F and one or more of second elements selected from the group composed of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
An optical glass with high refractive index and low dispersion, having refractive index nd of 1.78-1.95, Abbe number vd of 32-50, and contains no GeO2, so it is not easily devitrified. An optical glass, represented by cation %, including: 1-20% of Si4+; 25-60% of B3+; 10-40% of La3+; 0-15% of Y3+; 0-20% of Nb5+; 0-15% of Ti4+; 0-10% of Ta5+; 0-5% of W6+; 0-15% of Zr4+; 0-10% of Zn2+; 0-10% of Bi3+. An optical glass with excellent transmittance, an optical glass preform and an optical element formed by the above optical glass. The optical element made by the above optical glass and the above glass preform or optical element blank, such as lens, can be used for optical systems.