Abstract:
A device for measuring the concentration of a biological constituent based on infrared radiation emitted by a subject's eardrum with the influence of the eardrum's thickness taken into account is provided.The biological constituent concentration measuring device includes: a detecting section for detecting infrared radiation emitted by an eardrum; an acquisition section for acquiring thickness information about the thickness of the eardrum; and a computing section for figuring out the concentration of the biological constituent based on the infrared radiation detected and the thickness information acquired. The infrared radiation emitted by the eardrum is subject to the influence of the subject's eardrum thickness. Therefore, by calculating the biological constituent concentration based on not only the infrared radiation detected but also the eardrum thickness information, the biological constituent concentration can be measured highly accurately.
Abstract:
Avoiding an illumination light irregularity to the utmost under increasing degree of integration and the memory capacity by suppressing a light amount irregularity on the illumination pupil plane to the utmost, unable to be adjusted by a conventional method. When the light amount irregularity on the illumination pupil plane which is the exit surface of the optical fiber is relatively large, focus of the imaging surface of the CCD camera is switched from the sample to the illumination pupil plane by a focus switching lens. The light amount irregularity is calculated and analyzed by the image processor. Based on the analyzed result, the exit surface position of the optical fiber is adjusted in the illumination optical system. In this manner, the illumination pupil plane which is the exit surface of the optical fiber can be adjusted to an illumination pupil plane where the light amount irregularity is small.
Abstract:
An optical module includes a light emitting element, a connector part that supports one end of an optical fiber and optically couples the optical fiber to the light emitting element, and a monitoring light receiving element that has a characteristic to increase photosensitivity with an increase in an ambient temperature, and receives a part of components of light emitted from the light emitting element.
Abstract:
A spectrometric or photo-detector device accessory for illumination of a sample and highly efficient collection of light therefrom includes an ellipsoidal mirror having focal points f1 and f2; a first optical fiber leg having a terminus positioned at or near f1 and containing fibers for conveying light to f1 and collecting light emitted from a sample positioned at f1, a second optical fiber having a terminus positioned at or near f2, for collecting light reflected by the mirror and focussed at f2 and a rigid stand for holding the mirror and fiber optic cables in fixed alignment.
Abstract:
The invention relates to a selective detector arrangement for the detecting of approximately point-like collected light in a predetermined wavelength region and angle of the field of vision, with an optical collector system which is made from a material passing the light at a predetermined wavelength range and with a light sensitive sensor element. The essence of the invention resides in that within a predetermined wavelength range for the optical collector system there is a characteristic focal point surface, which is spaced from the focal point surfaces characteristic of wavelengths lying outside of such range and that the sensor element is coupled with the optical collector system in optical fashion over an aperture which is formed in the focal point surface associated with the predetermined wavelength range, and wherein the size of the aperture substantially corresponds in size to the size of the focal point surface of the light falling at the predetermined angle of the field of vision and in the predetermined wavelength range.
Abstract:
A dual testing system and method is used to perform both optical power and wavelength measurements on laser light emitted from a laser diode, such as a chip-on-submount (COS) laser diode or a laser diode in a bar laser. A testing fixture may be used to facilitate both measurements by simultaneously detecting the light for performing a first test including the optical power measurement(s) and reflecting the light for performing a second test including the wavelength measurement(s). The testing fixture may include an angled photodetector and an optical coupling system such as a collimating lens, a focal lens and an optical waveguide. The testing fixture may be electrically connected to an optical power testing module, such as a light-current-voltage (LIV) testing module, for performing the optical power measurement(s) and may be optically coupled to a wavelength measurement module, such as an optical spectrum analyzer (OSA) for performing the wavelength measurement(s).
Abstract:
A sunlight collecting device provided in the present invention includes a lens substrate, a plurality of Fresnel lens, a connector substrate, a plurality of optical fiber connectors, and a light-tracking substrate. The lens substrate has a plurality of circular openings. The Fresnel lenses correspond to the circular opening and are disposed on the lens substrate. The connector substrate is disposed parallel to the lens substrate and away from the lens substrate with a focal length. The optical fiber connectors are adjustably disposed on the connector substrate. The light-tracking substrate is disposed between the lens substrate and the connector substrate for simultaneously rotating the lens substrate and the connector substrate such that the Fresnel lenses are directly opposite to the sunlight. An LCD using the sunlight as a backlight source is further provided in the present invention.
Abstract:
Systems which utilize electromagnetic radiation to investigate samples and include at least one spatial filter which has an aperture having a hole therethrough with a non-unity aspect ratio.
Abstract:
A high-speed optical sensing device is provided in the present invention. The high-speed optical sensing device has an optical detector, a lens set, and a beam splitter. The optical detector is utilized for detecting luminous intensity. The lens set is utilized for concentrating light beams toward a color analyzer. The beam splitter is aligned to the illuminating device to be detected and is utilized to separate the light beam generated by the illuminating device to the optical detector and the lens set simultaneously.
Abstract:
An optical module includes a light emitting element, a connector part that supports one end of an optical fiber and optically couples the optical fiber to the light emitting element, and a monitoring light receiving element that has a characteristic to increase photosensitivity with an increase in an ambient temperature, and receives a part of components of light emitted from the light emitting element.