Abstract:
본 발명은 동적 조사를 사용하는 개체를 검사하도록 구성되는 광학 검사 시스템 또는 툴에 관한 것이며, 여기서, 상기 조사의 하나 또는 그 초과의 특징은 상이한 영역의 검사 요건을 충족시키도록 조절된다. 예를 들어, 상기 조사 강도는 상기 툴이 웨이퍼 다이에서 메모리 영역 및 주변 특징을 검사함에, 증가되거나 감소될 수 있다. 일부 실시예에서, 상기 조절은 데이터에 기초할 수 있는데, 여기서 상기 데이터는 사전-검사 셋업 시퀀스 동안 얻어진 것이며, 여기서 특징을 바꾸면서 조사에 기초하여 취해진 이미지들은 나머지 검사 과정에서 적합성이 평가된다.
Abstract:
입사한 복사선을 관련 파장 스펙트럼으로 분산하는 프리즘(44)에 복사선의 평행 광선을 제공하기 위해 입구 슬릿(40)과 시준기(42)를 채택한 SLM 분광기가 제공된다. 프리즘(44)로부터의 스펙트럼은 변형가능 미러 장치(DMD)와 같은 공간 광 변조기(SLM)(46)에 입사된다. SLM 표면의 작은 부분을 선택적으로 활성화(또는 불활성화)함으로써 SLM에 입사한 스펙트럼의 일부분을 파라볼라 집속 미러(48)과 같은 집속 장치에 선택적으로 반사 또는 전송하는 것이 가능하다. 집속 장치는 SLM 상의 선택된 셀에 의해 반사된 스펙트럼의 부분을 다시 감지기(50)에 집속한다. 선택된 파장은 SLM에서 어느 열의 셀들이 활성화(또는 불활성화)되었는지의 함수이다. 본 발명의 SLM 분광기는 가시광과, 근적외선 또는 자외선과 같은 가시광에 가까운 광을 분석하는 데에 사용될 수 있다. 감지기 또는 검출기의 출력은 적절히 증폭되어, 적절한 교정 후에 특정 파장 또는 파장 대역에 있는 에너지의 양을 결정하기 위해 채택될 수 있다.
Abstract:
An optical system and associated method enable near real time optical phase conjugation. In the method, a translucent medium is illuminated by a sample illumination beam. Light scattered by the medium is directed to an electronic image sensor while a reference beam is also directed to the electronic image sensor. The scattered light and the reference beam form an interference pattern at the electronic image sensor. A digital representation of the interference pattern is recorded using the electronic image sensor, and the characteristics of a conjugate of the sample beam are computed from the numerical representation. A conjugate beam having the computed characteristics is generated using a configurable optical element and directed back to the translucent medium. The generation of the conjugate beam may be accomplished using a spatial light modulator.
Abstract:
A method of imaging a fluorescent sample comprising the steps of: scanning fluorescent points (9, 11) of said sample using scanner means (10, 8A, 88), thereby obtaining scanned fluorescent points; imaging said scanned fluorescent points on display means (12), said scanning comprising: predefining a scan field (2) for said sample, which comprises a set of scannable fluorescent points (9, 11); sequentially irradiating, using irradiation means (4, 8A, 8B), at least one first subset of points of said set of points and at least one second subset of said set of points, which complements said first subset with respect to said set of points. The first and second subsets can be irradiated at different focal irradiation distances (PI, P2).
Abstract:
Method of fluorescence imaging comprising: a) illuminating a sample to excite its fluorescence and acquiring an image thereof; b) based on spectral and spatial information from the sample's fluorescence image, segmenting the image into regions of similar spectral properties; c) for each image segment, exciting the fluorescence of the corresponding sample region, and detecting the corresponding fluorescence; d) based on modelling, determining expected fluorescence parameters from the fluorescence signals detected for each region; e) scanning the sample and determining final fluorescence parameters based on said expected fluorescence parameters from step d).
Abstract:
A spectroscopic instrument for conducting multi-wavelength, multi-azimuth, multi-angle-of-incidence readings on a substrate, the instrument having a broadband light source for producing an illumination beam, an objective for directing the illumination onto the substrate at multiple azimuth angles and multiple angels-of-incidence simultaneously, thereby producing a reflection beam, an aperture plate having an illumination aperture and a plurality of collection apertures formed therein for selectively passing portions of the reflection beam having desired discreet combinations of azimuth angle and angle-of-incident, a detector for receiving the discreet combinations of azimuth angle and angle-of-incident and producing readings, and a processor for interpreting the readings.
Abstract:
An optical system and associated method enable near real time optical phase conjugation. In the method, a translucent medium is illuminated by a sample illumination beam. Light scattered by the medium is directed to an electronic image sensor while a reference beam is also directed to the electronic image sensor. The scattered light and the reference beam form an interference pattern at the electronic image sensor. A digital representation of the interference pattern is recorded using the electronic image sensor, and the characteristics of a conjugate of the sample beam are computed from the numerical representation. A conjugate beam having the computed characteristics is generated using a configurable optical element and directed back to the translucent medium. The generation of the conjugate beam may be accomplished using a spatial light modulator.