Abstract:
An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
Abstract:
Motion control system and method for biosensor scanning that include inputting to a multi-axis motion controller move commands associated with the scan path as defined by multiple axes. The multiple axes including an x-baseline coordinate x0, a y-baseline coordinate y0, an x-direction oscillation amplitude x1, a y-direction oscillation amplitude y1, an oscillation frequency f and a phase φ. The multi-axis motion controller outputs digital commanded positions for each of the multiple axes. A post-processor receives the commanded positions and generates parameterized commanded positions x and y that each include a baseline motion component and an oscillating motion component. The parameterized commanded positions cause the scanning optical system to deflect the light beam to scan the beam spot over the scan path to scan the biosensor.
Abstract:
The invention relates to a system comprising a broadband optical light source and a sorting device and more specifically to laser sorting devices. The object of the present invention is to provide a system comprising a sorting device with a light-source offering all wavelengths for the sorting process. This is solved by using an all fiber supercontinuum light source.
Abstract:
An optical metrology device capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample is disclosed. The metrology device includes a first light source (110) that produces a first illumination line (122) on the sample (101). A scanning system (116) may be used to scan an illumination spot across the sample to form the illumination line. A detector (130) spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source (140) may be used to produce a second illumination line (142) on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
Abstract:
Scanning of a microarray is performed through a mask that exposes a plurality, but not all, of the sites of the microarray, and either the mask is movable relative to the microarray or the microarray is movable relative to the mask, or both. The mask is useful as a means of restricting the illumination of sites on the microarray to those that can be illuminated while the scan head is traveling at a steady, target velocity, blocking the passage of light between the scan head and the microarray at those points in the scan head trajectory where the scan head is either accelerating or decelerating. The mask is also useful for reducing background noise in the microarray image by preventing light spillage to sites adjacent to those being scanned.
Abstract:
A conveyance device supports and conveys an object. The conveyance device has a support portion in which an opening narrower than the object is provided at a position where the object is supported. A lighting device irradiates a first surface of the object with measurement light having a wavelength changing over time through the opening of the support portion. A light receiving device detects object light that is diffusely transmitted light emitted from a second surface of the object.
Abstract:
A subject-to-be-examined support unit that supports a subject to be examined, a light source unit that outputs light entering the subject-to-be-examined support unit from a side opposite to a side by which a sample is supported, a fluorescent plate that is illuminated with the light that has been output from the light source unit and passed through the subject-to-be-examined support unit and the sample, and emits fluorescence, a photomultiplier that detects fluorescence that has been emitted from the fluorescent plate and passed through the subject-to-be-examined support unit and the sample, and a plate support unit that supports the fluorescent plate are provided. The plate support unit is structured in such a manner that a distance between the subject-to-be-examined support unit and the fluorescent plate is changeable by moving the fluorescent plate in a direction closer to the subject-to-be-examined support unit and in a direction away therefrom.
Abstract:
A method and apparatus for obtaining reference samples during the generation of a mid-infrared (MW) image without requiring that the sample being imaged be removed is disclosed. A tunable MIR laser generates a light beam that is focused onto a specimen on a specimen stage that moves the specimen in a first direction. An optical assembly includes a scanning assembly having a focusing lens and a mirror that moves in a second direction, different from the first direction, relative to the stage such that the focusing lens maintains a fixed distance between the focusing lens and the specimen stage. A light detector measures an intensity of light leaving the point on the specimen. A controller forms an image from the measured intensity. A reference stage is positioned such that the mirror moves over the reference stage in response to a command so that the controller can also make a reference measurement.
Abstract:
Motion control system and method for biosensor scanning that include inputting to a multi-axis motion controller move commands associated with the scan path as defined by multiple axes. The multiple axes including an x-baseline coordinate x0, a y-baseline coordinate y0, an x-direction oscillation amplitude x1, a y-direction oscillation amplitude y1, an oscillation frequency f and a phase φ. The multi-axis motion controller outputs digital commanded positions for each of the multiple axes. A post-processor receives the commanded positions and generates parameterized commanded positions x and y that each include a baseline motion component and an oscillating motion component. The parameterized commanded positions cause the scanning optical system to deflect the light beam to scan the beam spot over the scan path to scan the biosensor.