Abstract:
A catheter for emitting radiation is disclosed, comprising a catheter shaft (104), and an x-ray unit (102) attached to the distal end of the catheter shaft. The x-ray unit comprises an anode (112), and a cathode (110) coupled to an insulator (108) to define a vacuum chamber (106). The cathode is preferably a field emission cathode of graphite or graphite coated with titanium carbide, for example. The anode is preferably tungsten, and the insulator is preferably pyrolytic boron nitride. The x-ray unit is preferably coupled to a voltage source through a coaxial cable. The anode is preferably a heavy metal such as tungsten. The cathode may also be a ferroelectric material. The x-ray unit can have a diameter less than about 4mm, and a length less than about 15 mm. Methods of use of the catheter are also disclosed. The catheter of the present invention can be used to irradiate the site of an angioplasty procedure to prevent restenosis. It can also be used to treat other conditions in any vessel, lumen or cavity of the body.
Abstract:
Ferroelectric, pyroelectric and piezoelectric crystals are used to generate spatially localized high energy (up to and exceeding 100 keV) electron and ion beams, which may be used in a wide variety of applications including pulsed neutron generation, therapeutic X-ray/electron devices, elemental analysis, local scanning chemical analysis, high energy scanning microscopy, point source compact transmission electron microscopy, compact ion beam sources, positron sources, micro-thrusters for ion engines, and improved fusion efficiency especially of the Farnsworth type. The high-energy emission can be created by simply heating the material or by application of external coercive electromagnetic and acoustic fields.
Abstract:
Disclosed is a cold cathode (1) for use in discharge lamps, including in discharge lamps (6) operating with a dielectrically hindered discharge, comprising two electroconducive electrodes facing each other, between which a ferro-electric material is sandwiched. At least one of the electrodes presents one or more openings. When the cathode is operating, a voltage of quickly alternating polarity is applied to both electrodes, thereby freeing electrons on the surface of the ferro-electric material. The working voltage of the discharge lamp causes an acceleration of said electrons, which pass through the openings towards the anode (8) and are used for igniting the discharge lamp and keeping it in operating mode.
Abstract:
Ferroelectric, pyroelectric and piezoelectric crystals are used to generate spatially localized high energy (up to and exceeding 100 keV) electron and ion beams, which may be used in a wide variety of applications including pulsed neutron generation, therapeutic X-ray/electron devices, elemental analysis, local scanning chemical analysis, high energy scanning microscopy, point source compact transmission electron microscopy, compact ion beam sources, positron sources, micro-thrusters for ion engines, and improved fusion efficiency especially of the Farnsworth type. The high-energy emission can be created by simply heating the material or by application of external coercive electromagnetic and acoustic fields.
Abstract:
Ferroelectric, pyroelectric and piezoelectric crystals are used to generate spatially localized high energy (up to and exceeding 100 keV) electron and ion beams, which may be used in a wide variety of applications including pulsed neutron generation, therapeutic X-ray/electron devices, elemental analysis, local scanning chemical analysis, high energy scanning microscopy, point source compact transmission electron microscopy, compact ion beam sources, positron sources, micro-thrusters for ion engines, and improved fusion efficiency especially of the Farnsworth type. The high-energy emission can be created by simply heating the material or by application of external coercive electromagnetic and acoustic fields.
Abstract:
A PED is constituted by arranging signal lines and scanning lines, in the form of a matrix, on the inner surface of a rear substrate and by forming PZT films, which are used as electron-emitting members, at the intersections of the signal lines and the scanning lines. When a voltage is applied between element electrodes connected to the lines, each PZT film emits an electron beam having a cross-section shape that depends on the shape of the PZT film.
Abstract:
An electron-emitting element includes an electric field applying portion comprising of a dielectric formed on a substrate, a first electrode formed on one surface of the electric field applying portion, a second electrode being formed on the surface of the electric filed applying portion, and a slit formed in cooperation with the first electrode.
Abstract:
A higher performance dielectric device is provided. An electron emitter applying the dielectric device according to the present invention includes an emitter formed of a dielectric, and an upper electrode and a lower electrode to which a drive voltage is applied to cause electron emission. The emitter includes plural dielectric particles, and plural dielectric particles of smaller particle size which are filled in spaces between the plural dielectric particles. The emitter having the aforesaid construction is formed by an aerosol deposition method or a sol impregnation method.
Abstract:
A comb-shaped electrode is formed on the main surface of a ferroelectric thin film and a planar electrode is formed on the rear surface of a ferroelectric thin film. Then, the property of the main surface of the ferroelectric thin film is converted into semi-conduction. Then, the assembly comprised of the ferroelectric thin film, the comb-shaped electrode and the planar electrode is disposed in a given atmosphere. Under this condition, a negative voltage is applied to the comb-shaped electrode to polarize the ferroelectric thin film, and a negative impulse voltage is applied to the planar electrode, thereby generating electron beams from the main surface of the ferroelectric thin film.
Abstract:
A cathode, an electron gun, and a cathode ray tube include a ferroelectric electron source. The cathode includes a substrate; a lower electrode layer on the substrate; a cathode layer, on the lower electrode layer, the cathode layer including a ferroelectric emitter; an upper electrode layer, on the ferroelectric cathode layer, the upper electrode layer having electron emitting regions comprising a plurality of electron emission holes for passing electrons emitted from the ferroelectric emitter; and a driving electrode layer, supported by the upper electrode layer, for controlling passage of electrons through the electron emitting regions in the upper electrode layer and the driving electrode layer.