Abstract:
To attain objects to reduce the spread of electrons as compared with a conventional one without degrading the multiplication factor of electrons; to provide a large electron multiplication factor; and to improve positional resolution, there is provided a gas electron multiplier using interaction between radiation and gas through photoelectric effects including: a chamber filled with gas and a single gas electron multiplication foil arranged in the chamber wherein the gas electron multiplication foil is made of a plate-like multilayer body composed by having a plate-like insulation layer made of a macromolecular polymer material having a thickness of around 100 μm to 300 μm and flat metal layers overlaid on both surfaces of the insulation layer, and the plate-like multilayer body is provided with a through-hole structure.
Abstract:
A virtual cathode deposition apparatus utilises virtual plasma cathode for generation of high density electron beam to ablate a solid target. A high voltage electrical pulse ionizes gas to produce a plasma which temporarily appears in front of the target and serves as the virtual plasma cathode at the vicinity of target. This plasma then disappears allowing the ablated target material in a form of a plasma plume to propagate toward the substrate. Several virtual cathodes operating in parallel provide plumes that merge into a uniform plasma which when condensing on a nearby substrate leads to wide area deposition of a uniform thickness thin film.
Abstract:
A pulsed plasma deposition device, comprising an apparatus for generating a beam of electrons (3), a target (4) and a substrate (6), the apparatus (3) being suitable for generating a pulsed beam of electrons directed towards said target (4) to determine the ablation of the material of said target (4) in the form of a plasma plume (19) directed towards said substrate (6); the device comprises a transportation and focussing group (13) of the beam of electrons towards said target (4), arranged between said apparatus (3) and said target (4) and comprising a transportation cone (14), the transportation and focussing group (13) also comprising a focussing electrode (15) directly connected to the transportation cone (14) and shaped substantially like a loop; the axis of symmetry (16) of the focussing electrode (15) is perpendicular, or substantially perpendicular, to the surface of the target (4).
Abstract:
One embodiment of the present invention is an electron beam treatment apparatus that includes: (a) a chamber; (b) a cathode (122) having a surface of relatively large area that is exposed to an inside of the chamber; (c) an anode (126) having holes therein that is disposed inside the chamber and spaced apart from the cathode by a working distance; (d) a wafer holder (130) disposed inside the chamber facing the anode; (e) a source of negative voltage (129) whose output is applied to the cathode to provide a cathode voltage; (f) a source of voltage whose output is applied to the anode (131); (g) a gas inlet (129) adapted to admit gas into the chamber at an introduction rate; and (h) a pump (139) adapted to exhaust gas from the chamber at an exhaust rate, the introduction rate and the exhaust rate providing a gas pressure in the chamber; wherein values of cathode voltage, gas pressure, and the working distance are such that there is no arcing between the cathode and anode and the working distance is greater than an electron mean free path.
Abstract:
The invention concerns a source supplying an adjustable energy electron beam, comprising a plasma chamber (P) consisting of an enclosure (1) having an inner surface of a first value (S1) and an extraction gate (2) having a surface of a second value (S2), the gate potential being different from that of the enclosure and adjustable. The invention is characterized in that the plasma is excited and confined in multipolar or multidipolar magnetic structures, the ratio of the second value (S2) over the first value (S1) being close to: D = 1/ beta 2ROOT 2 pi me/mi exp (-1/2), wherein: beta is the proportion of electrons of the plasma P, me the electron mass, and mi is the mass of positively charged ions.
Abstract translation:本发明涉及提供可调节能量电子束的源,包括由具有第一值(S1)的内表面的外壳(1)和具有第二值表面(S1)的提取门(2)组成的等离子体室(P) 值(S2),栅极电位与外壳的电位不同并可调。 本发明的特征在于等离子体被激发并限制在多极或多极磁结构中,第二值(S2)与第一值(S1)的比值接近于:D = 1 /β2ROOT2πme/ mi exp(-1/2)其中:β是等离子体P的电子比例,me是电子质量,mi是带正电的离子的质量。
Abstract:
Es wird eine über Gasentladung getriggerte Kanalfunkenquelle zur Erzeugung von stabil gebündelten Elektronenstrahlen vorgestellt, die sich durch eine Gaszufuhr mit einer Druckdifferenz von 10 -4 Pascal zwischen der Hohlkathode und dem Kanalausgang auszeichnet, so dass die durch ein äuβeres Magnetfeld unterstützte Ladungsträgervermehrung im Triggerplasma eine Hohlkathodengasentladung zuverlässig zündet und der Strahl ohne Neigung zu Instabilitäten und Berührung bzw. Beschädigung des inneren Kanals das System verlässt.
Abstract:
Die Erfindung betrifft eine Vorrichtung zum Erzeugen eines Elektronenstrahls, umfassend ein Gehäuse (12), welches einen evakuierbaren Raum (13) begrenzt und eine Elektronenstrahlaustrittsöffnung aufweist; einen Einlass (16) für das Zuführen eines Arbeitsgases in den evakuierbaren Raum (13); eine flächige Kathode (14) und eine Anode (15), die im evakuierbaren Raum (13) angeordnet sind und zwischen denen mittels einer angelegten elektrischen Spannung ein Glimmentladungsplasma erzeugbar ist, wobei Ionen aus dem Glimmentladungsplasma auf die Oberfläche der Kathode (14) beschleunigbar sind. Die Kathode weist einen aus einem ersten Material bestehenden ersten Teil (14a) auf, der einen zentral angeordneten ersten Oberflächenbereich der Kathode (14) ausbildet, sowie einen aus einem zweiten Material bestehenden zweiten Teil (14b), der einen zweiten Oberflächenbereich der Kathode (14) ausbildet, welcher den ersten Oberflächenbereich umschließt. Das erste Material ist durch das Beaufschlagen mit beschleunigten Ionen auf eine Temperatur erhitzbar, bei der Elektronen überwiegend durch Glühemission aus dem ersten Material heraustreten.
Abstract:
Device (1) for generating plasma and for directing an flow of electrons towards a specific target (3); the device (1) comprises a hollow cathode (5); a main electrode (7) at least partially placed inside the cathode (5); a resistor (12), electrically earthing the main electrode (7); a substantially dielectric tubular element (21) extending through a wall (22) of the cathode; a ring-shaped anode (25) placed around the tubular element (21) and earthed; and an activation group (11) which is electrically connected to the cathode (5) and is able to reduce the electric potential of the cathode (5) of at least 8 kV in about 10 ns.
Abstract:
A gas electronic amplifier employing interaction by photoelectric effect of radiation and gas in which spread of electrons can be reduced as compared with before without lowering the amplification factor of electrons, and positional resolution is enhanced while a high electron amplification factor is provided. The gas electronic amplifier comprises a chamber (102) filled with gas, and a single gas electron amplification foil (12) arranged in the chamber, wherein the gas electron amplification foil is composed of a planar multilayer body having a planar insulation layer (12a) of a high molecular polymer material about 100-300 µm in thickness, and planar metal layers (12b, 12c) covering the opposite sides of the insulation layer, and a through hole structure is provided in the planar multilayer body.