Abstract:
An electrical component for attachment to paper and other substrates comprises, according to one embodiment, a functional electronic part including one or more support pillars on an underside thereof. Each of the support pillars comprises: a channel extending therethrough from a top opening to a bottom opening, where the top opening of the channel is adjacent to the functional electronic part; and a magnet moveably positioned in the channel in electrical contact with the functional electronic part, where the bottom opening of the channel has a width smaller than a maximum lateral dimension of the magnet.
Abstract:
An image display device includes: a flexible board, a vibrational structure including a light reflecting film for reflecting light, and a molded circuit component including a mounting portion which is electrically connected to the vibrational structure and on which the vibrational structure is mounted and a connecting portion which is electrically and mechanically connected to the flexible board and which has a lower dynamic rigidity than the mounting portion. The flexible board and the vibrational structure are electrically connected via the molded circuit component.
Abstract:
A card reader for use with a card may include a card insertion part provided with an insertion port into which the card is inserted, a protruded part which is provided on a front face of the card insertion part and is protruded to a front side with respect to the card insertion part, a breakage detection wiring which is provided in an inside of the protruded part, and a detection part which detects at least one of disconnection and a short circuit of the breakage detection wiring.
Abstract:
A circuit board including a contact terminal on a side thereof, a method of fabricating the circuit board, and an electronic device including the circuit board are provided. The circuit board includes: a base layer; a wiring layer formed on the base layer; and a terminal section formed at a level corresponding to the wiring layer, on a first surface and a side surface of one end portion of the base layer.
Abstract:
An electronic component module includes a board, an electronic component, a sealing portion, a metal layer, and a magnetic layer. The board has a first main surface. The electronic component is provided on a first main surface of the board. The sealing portion seals the electronic component. The metal layer covers the sealing portion. The magnetic layer is provided between the sealing portion and the metal layer. The magnetic layer has a magnetic main body and a first cover sheet. The first cover sheet is provided between the magnetic main body and the metal layer. The first cover sheet has a first main surface and a second main surface. The first main surface faces the magnetic main body. The second main surface faces the metal layer. The second outer peripheral end of the second main surface is located inside the first outer peripheral end of the first main surface.
Abstract:
A flexible printed circuit board according to the present disclosures includes a base film having an insulating property, and a planar coil disposed on a surface of the base film, wherein a number of turns on an inside of a center point of a coil width of the planar coil in a plan view is greater than a number of turns on an outside of the center point.
Abstract:
A network communication device is disclosed. The network communication device includes a circuit board, a network connector, a network chip and a plurality of network magnetic assemblies. The network connector, the network chip and the network magnetic assemblies are disposed on the circuit board. The network magnetic assemblies are electrically connected with the network connector and the network chip, respectively. Each of the network magnetic assemblies includes an Ethernet transformer and at least one inductor. The Ethernet transformer is electrically connected in series with the inductor via a conductive trace of the circuit board. Any two adjacent Ethernet transformers are separately arranged with a gap having a second specific length.
Abstract:
A network communication device is disclosed. The network communication device includes a circuit board, a network connector, a network chip and a plurality of network magnetic assemblies. The network connector, the network chip and the network magnetic assemblies are disposed on the circuit board. The network magnetic assemblies are electrically connected with the network connector and the network chip, respectively. Each of the network magnetic assemblies includes an Ethernet transformer and at least one inductor. The Ethernet transformer is electrically connected in series with the inductor via a conductive trace of the circuit board. The spaced distance or a path length of the conductive trace between the Ethernet transformer and the inductor of the at least one network magnetic assembly is less than a first specific length.
Abstract:
A semiconductor package includes a VLSI semiconductor die and one or more output circuits connected to supply power to the die mounted to a package substrate. The output circuit(s), which include a transformer and rectification circuitry, provide current multiplication at an essentially fixed conversion ratio, K, in the semiconductor package, receiving AC power at a relatively high voltage and delivering DC power at a relatively low voltage to the die. The output circuits may be connected in series or parallel as needed. A driver circuit may be provided outside the semiconductor package for receiving power from a source and driving the transformer in the output circuit(s), preferably with sinusoidal currents. The driver circuit may drive a plurality of output circuits. The semiconductor package may require far fewer interface connections for supplying power to the die.
Abstract:
A manufacturing method for a conductive substrate with a filtering function includes preparing a core layer and forming first and second conductive holes in the core layer, forming a sacrificial copper layer on the first conductive hole and on the core layer, forming a metal layer on the second conductive hole, forming a metal post in the first conductive hole, forming a lower insulating layer on the core layer, forming a lower insulative post in the second conductive hole, forming a magnet wrapping around the metal post to obtain a first conductive post, forming an upper insulating layer on the core layer, forming an upper insulative post in the second conductive hole to obtain a second conductive post, removing the upper insulating layer, the lower insulating layer, and the remaining sacrificial copper post layer, followed by flattening.