Abstract:
A connector for connecting a first printed circuit board with a second printed circuit board that comprises a first column of differential signal pair launches offset from a second column of differential signal pair launches on the first printed circuit board so that each differential signal pair in the first column is closest to a launch of a first polarity in a corresponding differential signal pair in the second column on the first circuit board, a first column of differential signal pair launches offset from a second column of differential signal pair launches on the second printed circuit board so that each differential signal pair in the first column is closest to a launch of a second polarity, opposite the first polarity, in a corresponding signal pair in the second column on the second circuit board, and a connector electrically connecting the first column of differential signal pair launches on the first printed circuit board to the first column of differential signal pair launches on the second printed circuit board and electrically connecting the second column of differential signal pair launches on the first printed circuit board to the second column of differential signal pair launches on the second printed circuit board.
Abstract:
A method and apparatus for an electrical system architecture capable of providing fixed or modular components, for example, interface connectors, is provided. Fixed components allow product cost to be minimized. Modular components provide flexible configurability of products. In accordance with at least one embodiment of the present invention, an electrical system architecture capable of providing fixed or modular components minimizes costs such as design, production, and customer support costs while being able to provide a range of product variants.
Abstract:
An apparatus comprises a first plane adapted to receive a first voltage level and a second plane adapted to receive a second voltage level. The apparatus further comprises a path asymmetrically positioned between the first plane and the second plane. The path is capable of providing the network connection to one or more devices within a processor-based system, typically for the purpose of management of one or more domains in the system.
Abstract:
An electronic system comprises a system board and a transient voltage suppression (TVS) device coupled to the system board. The TVS device comprises an intermediate coupler coupled to the system board, and a TVS board coupled to the intermediate coupler and having components adapted to suppress transient voltages. The intermediate coupler provides a path between the system board and the TVS board to conduct transient voltage current to the TVS board.
Abstract:
A high frequency bus system (450) which insures uniform arrival times of high fidelity signals to the devices (510), despite the use of the bus (450) on modules (420) and connectors. The high frequency bus system (450) includes a first bus segment having one or more devices (510) connected between a first and second end. The high frequency bus system (450) also includes a second bus segment which has no devices connected to it. The first end of the first segment and the second end of the second segment are coupled in series to form a chain of segments and when two signals are introduced to the first end of the second bus segment at substantially the same time, they arrive at each device (510) connected to the first bus segment at substantially the same time. Conversely when two signals originate at a device (510) substantially at the same time, they arrive at the first end of the second bus segment at substantially the same time. Uniform arrival times hold despite the use of connectors to couple the segments together, despite the segments being located on modules, without the need for stubs, despite the presence of routing turns in the segments and despite the type of information, such as address, data, or control, carried by the signals.
Abstract:
A high frequency bus system (450) which insures uniform arrival times of high fidelity signals to the devices (510), despite the use of the bus (450) on modules (420) and connectors. The high frequency bus system (450) includes a first bus segment having one or more devices (510) connected between a first and second end. The high frequency bus system (450) also includes a second bus segment which has no devices connected to it. The first end of the first segment and the second end of the second segment are coupled in series to form a chain of segments and when two signals are introduced to the first end of the second bus segment at substantially the same time, they arrive at each device (510) connected to the first bus segment at substantially the same time. Conversely when two signals originate at a device (510) substantially at the same time, they arrive at the first end of the second bus segment at substantially the same time. Uniform arrival times hold despite the use of connectors to couple the segments together, despite the segments being located on modules, without the need for stubs, despite the presence of routing turns in the segments and despite the type of information, such as address, data, or control, carried by the signals.
Abstract:
An Advanced Mezzainine Card An Advanced Mezzanine Card (AMC) adapter may be used to connect a non-AMC mezzanine cared to an AMC carrier. The AMC adapter may include a card edge connector configured to be connected to an AMC connector on the AMC carrier and one or more mezzanine connectors configured to be connected to the non-MC mezzanine card. The AMC adapter may also include a bridge to convert between communication protocols used by the non-AMC mezzanine card and the AMC carrier. Of course, many alternatives, variations, and modification are possible without departing from this embodiment.