Abstract:
According to the present disclosure, a first optical system includes a first light source and emits a first illumination light. A second optical system includes a second light source and emits a second illumination light. A controller controls turning-on/off of the first light source and the second light source. The first optical system and the second optical system are configured such that a first illumination standard is satisfied by the first illumination light and the second illumination light. The first optical system is configured such that a second illumination standard is satisfied by the first illumination light. The controller allows the turning-on of the first light source when the turning-on of the second light source is disabled, and prohibits the turning-on of the second light source when the turning-on of the first light source is disabled.
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a studbump connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
A reinforcing member for a flexible printed wiring board allows a ground wiring pattern of the flexible printed wiring board to conduct with an external ground potential. The reinforcing member includes a metal base and a nickel layer formed on a surface of the metal base. The nickel layer includes phosphorus in a range from 5.0 percent by mass to 20.0 percent by mass, the rest of the nickel layer is nickel and inevitable impurities, and the nickel layer is 0.2 μm to 0.9 μm thick.
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a studbump connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
Power may be supplied to an electronic module according to various techniques. In one general implementation, for example, a system for supplying power to an electronic module may include a printed circuit board, the electronic module, and a conductive foil. The board may include a number of contact locations on a first side, with at least one of the contact locations electrically coupled to a via to a second side of the board. The electronic module may be electrically coupled to the contact locations on the first side of the board and receive electrical power through the at least one contact location electrically coupled to a via. The foil may be adapted to convey electrical power for the electronic module and electrically coupled on the second side of circuit board to at least the via electrically coupled to a contact location that receives electrical power for the electronic module.
Abstract:
Buffer structures are provided that can be used to reduce a strain in a conformable electronic system that includes compliant components in electrical communication with more rigid device components. The buffer structures are disposed on, or at least partially embedded in, the conformable electronic system such that the buffer structures overlap with at least a portion of a junction region between a compliant component and a more rigid device component. The buffer structure can have a higher value of Young's modulus than an encapsulant of the conformable electronic system.
Abstract:
The present subject matter relates to the field of fabricating microelectronic devices. In at least one embodiment, the present subject matter relates to forming an interconnect that has a portion thereof which becomes debonded from the microelectronic device during cooling after attachment to an external device. The debonded portion allows the interconnect to flex and absorb stress.
Abstract:
A method for producing a circuit board element, and a corresponding circuit board element, with which it is possible to suppress the risk of delamination in the region of a component (e.g. a wire or a plate-like shaped part) that is embedded in the circuit board element. To this end, the present invention suggests that the surface of the component should be roughened, at least partially, in order to ensure a better adhesive bond with the surrounding cover layer (e.g. a prepreg made of an insulating material compound). The component surface can be roughened by chemical methods such as etching or by purely mechanical methods such as sand blasting.
Abstract:
An item of print media (30) including an inductive secondary (50) for providing power to a load (32). The inductive secondary is responsive to an electromagnetic flux to generate a time-varying current or voltage therein. The current or voltage induced in the inductive secondary directly or indirectly powers the load to thereby enhance the functionality and/or the appeal of the item of print media without significantly adding to its cost. The load can provide a visual and/or auditory output, and can include an electroluminescent display, an e-ink display, a piezo speaker coil, an electrostatic speaker, an OLED, an LED or an LCD display. Embodiments of the invention can be utilized in connection with a wide variety of print media, including for example books, booklets, pamphlets, labels, magazines, manuals, brochures, maps, charts, posters, journals, newspapers or loose leaf pages.
Abstract:
A manufacturing method of electrical bridges, wherein a conductive pattern (2) from electroconductive material, such as metal foil, is applied over a substrate (1) made of electrically insulating material and the electroconductive material has at least one strip tongue (3) unattached to the substrate, one side of the tongue is attached to the conductive pattern (2), and the said strip tongue (3) is folded over an area insulated electrically from the conductive pattern (2), and the strip tongue (3) is connected electroconductively to a predetermined other part (5) of the conductive pattern (2).