Abstract:
The invention pertains to a method of spatially resolved detection of a gas substance in an area, comprising: imaging the area on a first image sensor, in a wavelength spectrum including an absorption wavelength peak corresponding to said gas substance; imaging the area on a second image sensor, to provide for each pixel of the first image a corresponding pixel of the second image for respective on- and off-peak wavelengths relative to the absorption wavelength; and providing a difference image as a function of the two pixel values of first and second image sensors to produce an image of the spatially resolved absorption wavelength corresponding to said gas substance.
Abstract:
In a system for analyzing optical properties of an object (350) a point source of light (100) composed of multiple spectral bands each having a respective amplitude, phase and polarization is converted by first optics (120, 150) into a line light source to illuminate an object line on the object. A beam splitter (200) splits the light exiting the first optics and directs a first portion of light on to the object (350) as an illuminated line and a second portion of the light on to a reference mirror (450). Second optics (500) collects respective first and second lines of light reflected by the object and mirror of and collinearly images the reflected lines of light as an image line on to an imaging spectrometer (550) wherein mutual interference allows determination of the optical properties of the object at each point along the object line.
Abstract:
A method for imaging a sample, the method includes, during a single acquisition event, receiving a first polarization-encoded EM field for a first point and a second polarization-encoded EM field for a second point. The method further includes redirecting the first polarization-encoded EM field along a first pre-determined direction to a first location on a dispersing re-imager and the second polarization-encoded EM field along a second pre-determined direction to a second location on the dispersing re-imager. The method further includes spectrally dispersing the first polarization-encoded EM field to obtain a first spectrum, re-imaging the first spectrum onto a first location on a detector, spectrally dispersing the second polarization-encoded EM field to obtain a second spectrum, re-imaging the second spectrum onto a second location on the detector, and detecting the first re-imaged spectrum and the second re-imaged spectrum.
Abstract:
A method and apparatus for convolving spectroscopic data with certain phase information for practicing phase- compensated sensitivity-enhanced spectroscopy (PCSES). PCSES uses a beam of radiation in a polarization state PS P from a source emitting at a plurality of wavelengths, and places in the beam a compensator capable of altering polarization state PS P by applying a delimited phase shift Δ between two orthogonal polarization axes of the radiation to restrict a finely-vibrating spectrum. A sample disposed in the beam after the compensator generates a response beam by reflection, transmission or even both. A polarization state PS a of the response beam is passed to a detector to determine a spectrum of the response beam. A first spectrum is collected when polarization states PS P , PS a and the compensator are in a first polarization-altering configuration and a second spectrum is collected when polarization states PS P , PS a and the compensator are in a second polarization-altering configuration. A phase-compensated spectrum is then derived from just the first and second spectra thereby allowing the user to undertake optical characterization, including the measurement of film thickness t and complex indices of refraction n, k of the sample with as few as just two polarization-altering configurations.
Abstract:
An optical measurement Method and System for spectroscopy are disclosed for evaluating the parameters of a sample. The device generally includes a broadband source for generating a light beam. Reflected light beam are simultaneously analyzed as a function of the position within the beam to provide information at multiple wavelengths and/or angular distribution. A Furier filter, comprising dispersion element and a two-dimensional photodetector array are used so that the beam may be simultaneously or consicuently analyzed at multiple angles of returned from the sample (diffracted) light at multiple wavelengths.
Abstract:
A spectrometer generates Vibrational Circular Dichroism (VCD) measurements having an exceedingly high signal-to-noise ratio, as well as a greater wavelength range over which measurements may be accurately provided. This is achieved by utilizing reflective optics (preferably solely reflective optics, i.e., no refractive elements) to supply a concentrated and collimated input light beam to a sample within a sample cell, and similarly collecting the light output from the sample cell via reflective optics for supply to a detector.
Abstract:
Macroscopic and microscopic samples are imaged through a spectral filter operable into the short wave infrared, e.g., to approximately 3200nm. The sample is iliuminated for reflective, transmissive, fluorescent and/or Raman imaging by a laser or metal-halide arc beam. The filter has tunable birefringent retarders distributed rotationally and stacked in stages leading up to a selection polarizer. Image forming optics and CCD cameras collect the luminance of each pixel in the spatially resolved image, at multiple wavelengths to which the filter is tuned successively. The filter stages have comb shaped transmission characteristics. Two filter stages with distinctly different characteristics can be cascaded, one or both being tunable. The combined transmission characteristic has narrow passbands where the bandpass peaks of the stages coincide and wide free spectral range where the peaks do not coincide. Embodiments are disclosed for forensic analysis, material composition and morphology, chemical compound identification and detection of biological species.
Abstract:
The disclosure relates to a portable and/or handheld bioagent detector and methodology described herein that is based in part on advanced Raman Chemical Imaging ("RCI") technology. According to one embodiment of the present disclosure, the detection system may include a fiber array spectral translator ("FAST") and may also include a probe which may include a complementary metal oxide semiconductor (CMOS) camera. The probe alleviates the need to place the main instrument close to an unconfined release of a potentially hazardous material and facilitates analysis of a sample that is situated in a hard-to-reach location while minimizing contamination of the detector and operator.
Abstract:
Designs, implementations, and techniques for optically measuring a sample to obtain spectral absorbance map of the sample. Light at different wavelength bands may be used to detect different absorption features in the sample. Multiple light sources may be used including tunable lasers.
Abstract:
An optical apparatus in which multiplexed holograms are used to achieve wavelength selectivity and polarization manipulation is used to facilitate near-normal incidence of light on the holograms. The polarization manipulation allows light reflected from the holograms to be separated from the light incident on the holograms. In one application, the apparatus can be used to extract spectral lines of an analyte from radiation scattered from a sample.