Abstract:
A miniature unmanned aircraft which uses remotely controlled model aircraft components and technology, and has on-board automatic “on-the-fly” fuel and air mixture adjustment enabling high altitude flight. The aircraft, which may have conventional fuselage, wing, reciprocating piston engine and radio frequency operated controls, also has sensors for sensing atmospheric pressure, atmospheric temperature, engine crankshaft rotational speed, engine temperature, and exhaust temperature. A microprocessor aboard the aircraft receives inputs from the sensors and controls at least one servo to adjust fuel and air mixture according to preprogrammed look-up tables and equations to operate the engine at appropriate fuel-to-air ratios for the altitude and other operating conditions.
Abstract:
An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% fall of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.
Abstract:
The Duffel Bag Airplane is an inflatable flying wing unmanned airborne vehicle (UAV). The fuselage will house everything but the wings. The wing can be rolled up around the fuselage into a small package when deflated for easy transportation, such as by being carried in a duffle bag. Fabric construction, a small internal combustion engine with cooled exhaust, and wing warping controls combine to make the airplane inexpensive and extremely stealthy. All the usual signatures have been suppressed, which allow it to be used to make observations from close range under combat conditions. Control of this airplane is accomplished by warping the wings and is supplemented with stability augmentation.
Abstract:
A miniature unmanned aircraft which uses remotely controlled model aircraft components and technology, and has on-board automatic nullon-the-flynull fuel and air mixture adjustment enabling high altitude flight. The aircraft, which may have conventional fuselage, wing, reciprocating piston engine and radio frequency operated controls, also has sensors for sensing atmospheric pressure, atmospheric temperature, engine crankshaft rotational speed, engine temperature, and exhaust temperature. A microprocessor aboard the aircraft receives inputs from the sensors and controls at least one servo to adjust fuel and air mixture according to preprogrammed look-up tables and equations to operate the engine at appropriate fuel-to-air ratios for the altitude and other operating conditions.
Abstract:
A miniature, unmanned aircraft for acquiring and/or transmitting data, capable of automatically maintaining desired airframe stability while operating by remote directional commands. The aircraft comprises a fuselage and a wing, a piston engine and propeller, a fuel supply, at least one data sensor and/or radio transceiver, a microprocessor disposed to manage flight, a radio transceiver for receiving remotely generated flight direction commands, a GPS receiver, a plurality of control surfaces and associated servomechanisms, for controlling flight stabilization and direction, roll, pitch, yaw, velocity, and altitude sensors. The microprocessor uses roll, pitch, yaw, and altitude data to control attitude and altitude of the aircraft automatically, but controls flight direction solely based on external commands. The aircraft does not exceed fifty-five pounds.
Abstract:
A miniature, unmanned aircraft having a parachute which deploys automatically under certain conditions. The aircraft has a flight control system based on remotely generated signals, potentially achieves relatively high altitude flight for a remotely controlled aircraft, and can thus operate well beyond line-of-sight control. For safety, an automatically deployed parachute system is provided. The parachute deployment system includes a folded parachute and a propulsion system for expelling the parachute from the aircraft. Preferably, a microprocessor for flight management sends intermittent inhibitory signals to prevent unintended deployment. A deployment signal is generated, illustratively, when the microprocessor fails, when engine RPM fall below a predetermined threshold, and when the aircraft strays from predetermined altitude and course.
Abstract:
A vertical take-off and landing miniature aerial vehicle includes an upper fuselage segment and a lower fuselage segment that extend in opposite directions from a rotor guard assembly. A rotor rotates within the rotor guard assembly between the fuselage segments. Plural turning vanes extend from the rotor guard assembly beneath the rotor. Moreover, plural grid fins extend radially from the lower fuselage segment below the turning vanes. The aerial vehicle is capable of taking off and landing vertically. During flight, the aerial vehicle can hover and transition between a horizontal flight mode and a vertical flight mode using the grid fins.
Abstract:
An unmanned flying vehicle comprises an autonomous flying wing having at least two wing portions arranged substantially symmetrically about a center portion. Each wing portion is pivotally attached to each adjoining portion such that the wing portions are foldable for storage and openable for deployment. A preferred form is the so-called seagull wing having four wing portions. The vehicles may be programmable from a mother aircraft whilst being borne to a deployment zone using a data link which may be wireless.
Abstract:
A semiautonomously directed, autonomously controlled, gyroscopically stabilized, horizontal or vertical take off and landing (HOVTOL) flying apparatus employing two vertical lift devices equally and longitudinally spaced from the center of gravity of the apparatus; continuously integrated with a drive train apparatus, optional single or multiple power means; congruously connected thereto horizontal thrust devices. Integral to the vertical lift devices; pitch axis control devices situated at the exhaust orifices therein to vector said devices exhaust slip stream by a autonomous flight control system providing pitch stability. The autonomous flight control system providing continuously all flight control of the apparatus and said system being interfaced to a semiautonomous flight director device providing discrete flight direction function codes thereto. The combined effect of the apparatus is: When the power system rotates; coincident rotation of the drive train causes the vertical lift apparatus and horizontal thrust apparatus to counter rotate at right angles simultaneously providing both vertical lift and gyroscopic roll stability and simultaneously providing both horizontal thrust and gyroscopic yaw stability during flight; the continuous control thereof being accomplished by the autonomous flight control system and the directional steering, and function thereof in four axis effected by the semiautonomous flight director device which provides discrete flight function codes to the autonomous flight control system so as to disallow the initiation of negative flight maneuvers and/or functions providing for the safe unskilled pilot operation of the apparatus or any aircraft employing a autopilot having a autonomous digital flight control system.
Abstract:
An unmanned aerial vehicle that includes symmetrical wings, tail section and internal compartments. The wings which include the only control surfaces can be attached to either side of the aircraft. An engine and a payload are non-symmetrically attached modules. Assembly and disassembly is performed with quick release pin and plate latches, quarter turn fasteners and guides that prevent improper assembly. The compartments include quick release hatch covers for the various internal craft compartments.