Abstract:
A method and apparatus for converting spectral and light intensity values directly to digital data, utilizes an image sensor having at least one row of sensor elements, each element including a light sensitive capacitor and an access switch and which changes state and produces a corresponding digital output signal when a predetermined charge threshold is exceeded by the capacitor whose charge is a function of light intensity of an illuminating light source. The image sensor is illuminated with a reference light source having a known intensity through a neutral density gradient filter and the digital output of the sensor is examined for the row to obtain digital data corresponding to the number of state changes in the row. The image sensor is then illuminated with an unknown light source through the filter and the digital output of the sensor for the row is examined to obtain digital data corresponding to the number of state changes in the row. The intensity of the unknown light source is determined in digital form for the row as a function of the digital data and the known intensity of the reference light source.
Abstract:
A measurement method for characterization of a photodetector includes illumination of the photodetector with a variable electromagnetic radiation. The variable electromagnetic radiation has a temporally oscillating radiation intensity with fixed period and amplitude. The method also includes illumination of the photodetector with a first electromagnetic radiation having a temporally constant first radiation intensity and measurement of a first output signal at the photodetector. The method further includes illumination of the photodetector with a second electromagnetic radiation having a temporally constant second radiation intensity different from the first radiation intensity and measurement of a second output signal at the photodetector. The method additionally includes determination of a non-linearity of the photodetector by comparing the measurements of the first and second output signals.
Abstract:
A system, apparatus and method of improved measurement of the SPF factor of sunscreen compositions. In one embodiment, a method of measuring the protection of a sunscreen composition includes exposing skin to a known intensity of light, measuring the amount of remitted light from the skin, applying sunscreen to the skin, exposing the skin to which the sunscreen has been applied the known intensity of emitted light of the spectrum of light from which the sunscreen is intended to protect the skin, measuring the amount of light remitted from the skin, and calculating a UltraViolet-A Protection Factor (UVA-PF) of the sunscreen by comparing the amount of light remitted from the skin with the sunscreen to the amount of light remitted from the skin without the sunscreen.
Abstract:
Disclosed is a blue to white light conversion device, comprising: a light conversion subassembly comprising at least one light conversion layer, sandwiched between two light transmitting members, wherein the light conversion layer comprises a light conversion material comprising phosphors and/or quantum dots; at least one light diffusing subassembly neighboring the light conversion subassembly; and a top frame and a bottom frame surrounding the light diffusing subassembly and light conversion subassembly, respectively.
Abstract:
System and method for accurately measuring alignment of every exposure field on a pre-patterned wafer without reducing wafer-exposure throughput. Diffraction grating disposed in scribe-lines of such wafer, used as alignment marks, and array of encoder-heads (each of which is configured to define positional phase(s) of at least one such alignment mark) are used. Determination of trajectory of a wafer-stage scanning during the wafer-exposure in the exposure tool employs determining in-plane coordinates of such spatially-periodic alignment marks by simultaneously measuring position-dependent phases of signals produced by these marks as a result of recombination of light corresponding to different diffraction orders produced by these marks. Measurements may be performed simultaneously at all areas corresponding to at least most of the exposure fields of the wafer, and/or with use of a homodyne light source, and/or in a wavelength-independent fashion, and/or with a pre-registration process allowing for accommodation of wafers with differently-dimensioned exposure fields.
Abstract:
A calibration method for an absolute responsivity of a terahertz quantum well detector and a calibration device thereof, in which the device at least comprises: a driving power supply, a single frequency laser source, an optic, a terahertz array detector, a terahertz dynamometer, a current amplifier and an oscilloscope. The calibration method adopts a power detectable single frequency laser source as a calibration photosource, to obtain the absolute responsivity parameters of the detector at the laser frequency; a normalized photocurrent spectrum of the detector is used to further calculate the absolute responsivity parameters of the detector at any detectable frequency. the single frequency laser source with periodically output is adopted as a calibration photosource, the terahertz array detector and the dynamometer are adopted to directly measure and obtain the incident power of the calibrated detector.
Abstract:
A photosensor of the present invention includes a circuit portion (34), a collective cable support portion (42), a pressure-welding portion (36a˜36d) and a cable end support portion (46a˜46d). The circuit portion (34) is configured to control the light projecting element and the light receiving element. The collective cable support portion (42) is configured to support a collective cable (10) including a plurality of cables (12a˜12d). The pressure-welding portion (36a˜36d) is configured to perform conduction with the circuit portion (34) by pressure-welding and fixing each of the plurality of cables (12a˜12d). The cable end support portion (46a˜46d) is configured to support an end of each of the plurality of cables (12a˜12d). In each of the plurality of cables (12a˜12d), a length from the pressure-welding portion (36a˜36d) to the cable end support portion (46a˜46d) is longer than that from the collective cable support portion (42) to the pressure-welding portion (36a˜36d).
Abstract:
A device includes a diamond with one or more nitrogen vacancies, a light emitting diode configured to emit light that travels through the diamond, and a photo sensor configured to sense the light. The device also includes a processor operatively coupled to the photo sensor. The processor is configured to determine, based on the light sensed by the photo sensor, a magnetic field applied to the diamond.
Abstract:
A protector to protect a photon detector includes: a pulse rate comparator and a latcher, wherein the latcher latches to a set signal from the pulse rate comparator and protects the photon detector from detecting photons when the latch signal includes a latch protect level.