Abstract:
Systems and methods are described for carbon containing tips with cylindrically symmetrical carbon containing expanded bases. A method includes producing an expanded based carbon containing tip including: fabricating a carbon containing expanded base on a substrate; and then fabricating a carbon containing fiber on the expanded base. An apparatus includes a carbon containing expanded base coupled to a substrate; and a carbon containing extension coupled to said carbon containing expanded base. The carbon containing expanded base is substantially cylindrically symmetrical and said carbon containing extension is substantially cylindrically symmetrical.
Abstract:
A method for fabricating field emitters from a conductive or semiconductive substrate. A layer of low work function material may be formed on the substrate. Emission tips that include such a low work function material may have improved performance. An etch mask appropriate for forming emission tips is patterned at desired locations over the substrate and any low work function material thereover. An anisotropic etch of at least the substrate is conducted to form vertical columns therefrom. A sacrificial layer may then be formed over the vertical columns. A facet etch of each vertical column forms an emission tip of the desired shape. If a sacrificial layer was formed over the vertical columns prior to formation of emission tips therefrom, the remaining material of the sacrificial layer may be utilized to facilitate the removal of any redeposition materials formed during the facet etch.
Abstract:
A carbon fiber for a field electron emitter has a coaxial stacking morphology of truncated conical tubular graphene layers, each of which includes a hexagonal carbon layer and has a large ring end and a small ring end at opposite ends in the axial direction. The edges of the hexagonal carbon layers are exposed on at least part of the large ring ends. Since all the exposed edges function as electron emission tips, a large amount of emission current can be obtained.
Abstract:
An electrode for an electron gun and an electron gun using same are provided which make use of stable carbon material having small work function and which permit orientation control to be achieved and which can be manufactured at a low cost. An electrode for an electron gun uses carbon electrode(s) formed from amorphous carbon and carbon nanotubes or carbon nanofibers and molded in linear shape. The carbon electrode is obtained by mixing a resin composition such as chlorinated vinyl chloride resin, furan resin, etc., which forms non-graphitizing carbon after carbonizing, with a carbon powder such as carbon nanotubes or carbon nanofibers and, after extrusion, molding and carbonizing the molding obtained.
Abstract:
The present invention relates to a method for forming an electron emission source for an electron emission device and an electron emission device produced by the method. The method for forming an electron emission source comprises: depositing at least one kind of charged particles selected from the group consisting of carbon-based materials, metal particles, inorganic particles, and organic materials to a substrate charged by the opposite charge. The method provides an electron emission source for an electron emission device upon which carbon nanotubes are selectively deposited in a desired pattern without leaving surplus organic carbon. The resulting electron emission devices exhibit excellent life and electron emission characteristics. The method does not require additional surface treatment.
Abstract:
In the present invention an electron-emitting material is provided wherein the field emission initiation voltage or work function is smaller than that of conventional materials. That is, the present invention relates to an electron-emitting sheet material which is a material comprising a substrate 102 and a graphite sheet 101 laminated on the top of the substrate 102, wherein (1) the graphite sheet 101 has a layered structure of layers of graphenes consisting of a plurality of carbon hexagonal networks, (2) the graphenes are layered relative to one another so that the c-axial direction of each graphene is substantially perpendicular to the plane of the substrate 102, (3) the graphite sheet 101 is laminated on top of the substrate 102 so that the c-axial direction of each graphene is substantially perpendicular to the plane of the substrate 102, and (4) the graphite sheet 101 comprises an element other than carbon as a second element.
Abstract:
An electrode for an electron gun and an electron gun using same are provided which make use of stable carbon material having small work function and which permit orientation control to be achieved and which can be manufactured at a low cost. An electrode for an electron gun uses carbon electrode(s) formed from amorphous carbon and carbon nanotubes or carbon nanofibers and molded in linear shape. The carbon electrode is obtained by mixing a resin composition such as chlorinated vinyl chloride resin, furan resin, etc., which forms non-graphitizing carbon after carbonizing, with a carbon powder such as carbon nanotubes or carbon nanofibers and, after extrusion, molding and carbonizing the molding obtained.
Abstract:
A field emission cold cathode device of a lateral type includes a cathode electrode and gate electrode disposed on a major surface of a support substrate laterally side by side. The cathode electrode and gate electrode have side surfaces which oppose each other, and an emitter is disposed on the opposite side surface of the cathode electrode. The emitter includes a metal plating layer formed on the cathode electrode, and a plurality of granular or rod-shaped micro-bodies. The micro-bodies are consisting essentially of a material selected from the group consisting of fullerenes, carbon nanotubes, graphite, a material with a low work function, a material with a negative electron affinity, and a metal material, and are supported in the metal plating layer in a dispersed state.
Abstract:
In a field emission-type electron source (10), a strong field drift layer (6) and a surface electrode (7) consisting of a gold thin film are provided on an n-type silicon substrate (1). An ohmic electrode (2) is provided on the back surface of the n-type silicon substrate (1). A direct current voltage is applied so that the surface electrode (7) becomes positive in potential relevant to the ohmic electrode (2). In this manner, electrons injected from the ohmic electrode (2) into the strong field drift layer (6) via the n-type silicon substrate (6) drift in the strong field drift layer (6), and is emitted to the outside via the surface electrode (7). The strong field drift layer (6) has: a number of semiconductor nanocrystals (63) of nano-meter order formed partly of a semiconductor layer configuring the strong field drift layer (6); and a number of insulating films (64) each of which is formed on the surface of each of the semiconductor nanocrystals (63) and each having film thickness to an extent such that an electron tunneling phenomenon occurs.
Abstract:
A carbon substance comprises a structure and line-shaped bodies, the structure having a size ranging from about 1 nullm to about 100 nullm and including carbon and a metal or a metallic oxide, and the line-shaped bodies having diameters smaller than about 200 nm and including carbon as a main component thereof and growing radially from a surface of the structure. A method for manufacturing the carbon substance uses a thermal decomposition of a source gas containing carbon in the vicinity of a catalyst, wherein the catalyst comprises a first and a second materials, the first material being Ni or a Ni oxide and the second material being In or an In oxide; and the thermal decomposition is performed at a temperature ranging from about 675null C. to about 750null C. An electron emission element uses the carbon substance as an electron emission material. A composite material includes the carbon substance in its matrix.