Abstract:
Provided is a method of producing a transparent resin base printed material, including: a treatment liquid applying step of applying a treatment liquid which contains an acidic compound onto a transparent resin base material; an ink jetting step of jetting an aqueous ink, which contains a colorant, resin particles, water, and a solvent having a boiling point of 150° C. to 250° C. and in which the content of a solvent having a boiling point of higher than 250° C. is 1% by mass or less with respect to the total mass of the ink, onto the transparent resin base material to which the treatment liquid has been applied according to an ink jet system; and a drying step of drying the aqueous ink under a condition in which the surface temperature of the transparent resin base material is in a range of 60° C. to 100° C.
Abstract:
To provide a palette, etc. on which an article is placed, including: a foamed synthetic resin-base material; and a polyurea-resin coating layer covering a front surface of the base material; and manufactured by a method including: injecting a polyurea-resin coating material onto a front surface of a foamed synthetic resin-base material; and drying the coating material after the injecting. The injecting may have injecting the coating material onto all surfaces of the base material. A thickness of the coating material formed on a front surface of the base material in the injecting may be controlled proportionally to an expansion ratio of the foamed synthetic resin. The thickness of the coating material may be controlled by adjusting a speed of conveyance of the base material and/or a distance between an injection port for the coating material and the base material. Heating-pressing the base material may further be included before the injecting.
Abstract:
A composite hose assembly including a fluoropolymer inner tube and a jacket circumferentially surrounding the fluropolymer tube. The jacket is formed from a plurality of plaits of fiberglass lace or other material. The jacket is then coated or infused with different resins along an axial length of the tube to impart varying degrees of flexibility along its length. A method of making the composite hose assembly includes: providing a fluropolymer inner tube, forming a jacket by circumferentially wrapping a plurality of plaits of fiberglass lace or other material around the fluropolymer tube, and infusing the plaits with different resins along its length to vary the flexibility.
Abstract:
A regenerable antimicrobial coating with long-lasting efficacy for use in medical applications including implants, medical instruments or devices, and hospital equipment is disclosed. The regenerable antimicrobial coating is derived from a polymer doped with a metal derivative which has been exposed to vapor-phase hydrogen peroxide, wherein hydrogen peroxide is sequestered in or on the doped polymer.
Abstract:
Methods and systems for deposition of blended polymer films are disclosed. According to an aspect a method of producing a film on a substrate includes combining a guest material, a host matrix, and a solvent having one or more hydroxyl (O—H) bonds to form a target emulsion. The method also includes exposing the target emulsion to an infrared source that is tuned to an absorption peak in the host matrix that is reduced in or absent from the guest material thereby desorbing the host matrix from the target emulsion and lifting the guest material from the surface of the target emulsion. The target emulsion and the substrate are oriented with respect to each other such that the lifted guest material is deposited as a film upon the substrate.
Abstract:
Disclosed are a UV hardening composition having improved light resistance, a three dimensional film, and a method for manufacturing the three dimensional film. Particularly, the UV hardening composition having improved light resistance may be used in interior materials and the like for a vehicle which generally are substantially exposed to UV rays. In addition, the UV hardening composition may also be used for indoor electronic products. The UV hardening composition according to the present invention includes a urethane acrylate resin, a polyester acrylate resin, a UV absorber, a hindered amine light stabilizer (HALS), an antioxidant and the like. Further, the three dimensional film including the UV hardening composition may be advantageous due to the improvement in the carbon pattern three dimensional effect formed in the three dimensional film. Therefore, a comparable price and reduced weight of the three dimensional film for a vehicle interior material are available while maintaining the quality equivalent to a film to which an actual carbon fabric is used.
Abstract:
Disclosed are methods and systems for dispersing nanoparticles into a matrix. Disclosed is a system and method for coating a carrier film with a resin, spraying the resin with a suspended nanoparticle solution, and then transferring the resin-nanoparticle matrix to a collection vessel for dispensing for end use. Also, suspended nanoparticle solution is sprayed onto carrier film, the film is dried, a fabric layer is coated with resin layer, and nanoparticles are then transferred into the fabric resin layer to create a nanoparticle-infused fabric matrix. Fabric layers can also be coated with resin and sprayed with nanoparticles. Also disclosed is a system and method for coating a first carrier film with nanoparticles, coating a second carrier film with resin, and transferring nanoparticles from first carrier into the resin layer on the second carrier to create a nanoparticle infused resin material that can be collected and dispensed for end use.
Abstract:
A trim structure for a vehicle includes at least two surface regions having different surface appearances and is manufactured in one unit. A method for providing a trim structure for a vehicle with at least two surface regions having different surface appearances comprises the steps of: a) providing a first surface appearance on at least a portion of an external surface of a trim structure body; b) providing a second surface appearance by applying a material layer on top of at least a part of the at least a portion having the first surface appearance; and c) removing a portion of the applied material layer, thereby revealing at least a portion of the under-lying first surface appearance.
Abstract:
A metal oxide-polymer laminate includes a polymer layer, and a metal oxide layer laminated on a surface of the polymer layer and formed by an aerosol deposition method. At least a portion of the metal oxide layer is embedded in the polymer layer in a thickness direction thereof.
Abstract:
This disclosure relates to a method of manufacturing a cover material for a molded part of a motor vehicle and to a respective cover material. The method includes the following: providing a cover skin which is provided with a seam or perforation and comprises a face and a back; and applying a back layer to the back of the cover skin, wherein, prior to applying the back layer, the seam or perforation is sealed on the back of the cover skin by applying a liquid, gelatinous or paste-like sealing material to the back of the cover skin above the seam or perforation.