Abstract:
Molded structures, methods of and apparatus for producing the molded structures are provided. At least a portion of the surface features for the molds are formed from multilayer electrochemically fabricated structures (e.g. fabricated by the EFABnull formation process), and typically contain features having resolutions within the 1 to 100 nullm range. The layered structure is combined with other mold components, as necessary, and a molding material is injected into the mold and hardened. The layered structure is removed (e.g. by etching) along with any other mold components to yield the molded article. In some embodiments portions of the layered structure remain in the molded article and in other embodiments an additional molding material is added after a partial or complete removal of the layered structure.
Abstract:
This invention comprises a process for fabricating a MEMS microstructure in a sealed cavity wherein the etchant entry holes are created as a by-product of the fabrication process without an additional step to etch holes in the cap layer. The process involves extending the layers of sacrificial material past the horizontal boundaries of the cap layer. The cap layer is supported by pillars formed by a deposition in holes etched through the sacrificial layers, and the etchant entry holes are formed when the excess sacrificial material is etched away, leaving voids between the pillars supporting the cap.
Abstract:
The present invention relates to a method for manufacturing a micromechanical component (100), that has at least one hollow space (110) and a functional element (12) that is provided at least partially in the hollow space (110) and/or a functional layer (13a, 13b, 13c) that is provided at least partially therein, and to a micromechanical component (100) that is manufactured in accordance with the method, according to the species of the relevant independent patent claim. To reduce manufacturing costs, the functional element (12) and/or the functional layer (13a, 13b, 13c) is provided with a first protective layer (41; 71) at least in an area that directly or indirectly borders on a first sacrificial layer (52), which temporarily occupies the space of the hollow space (22) that is subsequently formed in one or a plurality of etching steps (FIG. 4; FIG. 7), the material of the first protective layer (41) being selected such that at least one etching process and/or etching medium, which etches or dissolves the first sacrificial layer (52), either does not substantially attack the first protective layer (41; 71) or does so only at a reduced etching rate in comparison to the first sacrificial layer (52).
Abstract:
Electrothermal Self-Latching MEMS Switch and Method. According to one embodiment, a microscale switch having a movable microcomponent is provided and includes a substrate having a stationary contact. The switch can also include a structural layer having a movable contact positioned for contacting the stationary contact when the structural layer moves toward the substrate. An electrothermal latch attached to the structural layer and having electrical communication with the movable contact to provide current flow between the electrothermal latch and the stationary contact when the movable contact contacts the stationary contact for maintaining the movable contact in contact with the stationary contact.
Abstract:
Abstract of the Disclosure A monolithically integrated pressure sensor is produced through micromechanical surface structure definition techniques. A microphone cavity in the semiconductor substrate may be monolithically formed by plasma etching the front side or the back side of the silicon wafer to cut a plurality of trenches or holes deep enough to extend for at least part of its thickness into a doped buried layer of opposite type of conductivity of the substrate and of the epitaxial layer grown over it. The method may also include electrochemically etching through such trenches, the silicon of the buried layer with an electrolytic solution suitable for selectively etching the doped silicon of the opposite type of conductivity, thereby making the silicon of the buried layer porous. The method may also include oxidizing and leaching away the silicon so made porous.
Abstract:
This invention relates to micro-electromechanical systems using silicon-germanium films. Such a system includes one or more layers of Si1−xGex, deposited on a substrate, where 0
Abstract:
A microelectromechanical system is fabricated from a substrate having a handle layer, a silicon sacrificial layer and a device layer. A micromechanical structure is etched in the device layer and the underlying silicon sacrificial layer is etched away to release the micromechanical structure for movement. One particular micromechanical structure described is a micromirror.
Abstract:
A device structure is defined in a single-crystal silicon (SCS) layer separated by an insulator layer, such as an oxide layer, from a handle wafer. The SCS can be attached to the insulator by wafer bonding, and is selectively etched, as by photolithographic patterning and dry etching. A sacrificial oxide layer can be deposited on the etched SCS, on which polysilicon can be deposited. A protective oxide layer is deposited, and CMOS circuitry and sensors are integrated. Silicon microstructures with sensors connected to CMOS circuitry are released. In addition, holes can be etched through the sacrificial oxide layer, sacrificial oxide can be deposited on the etched SCS, polysilicon can be deposited on the sacrificial oxide, PSG can be deposited on the polysilicon layer, which both can then be patterned.
Abstract:
A method is disclosed for forming a micromechanical device. The method includes providing a sacrificial layer on a substrate, providing a first structural layer on the sacrificial layer and removing a portion of the first structural layer in an area intended for a hinge. Then, a second structural layer is provided over the first layer and in the removed area for the hinge. The second layer is preferably deposited directly on the sacrificial layer in this area. Last, a metal layer is deposited and the various layers are patterned to define a micromechanical device having one portion (e.g. a mirror plate) more stiff than another portion (e.g. hinge). Because a portion of the reinforcing layer is removed, there is no overetching into the hinge material. Also, because the metal layer is provided last, materials can be provided at higher temperatures, and the method can be performed in accordance with CMOS foundry rules and thus can be performed in a CMOS foundry.
Abstract:
A method for fabricating a micromechanical component, in particular a surface-micromechanical acceleration sensor, involves preparing a substrate and providing an insulation layer on the substrate, in which a patterned circuit trace layer is buried. A conductive layer, including a first region and a second region, is provided on the insulation layer, and a movable element is configured in the first region by forming a first plurality of trenches and by using an etching agent to remove at least one portion of the insulation layer from underneath the conductive layer. A contact element is formed and electrically connected to the circuit trace layer in the second region by configuring a second plurality of trenches, and the resultant movable element is encapsulated in the first region. The second plurality of trenches for forming the contact element in the second region is first formed after the encapsulation of the movable element formed in the first region.