Abstract:
A transportable ground station for a UAV includes a container in which the UAV may be transported and housed. The container includes a wireless or contact-based recharging station that recharges the UAV's batteries or other power sources after the UAV returns from a mission. The recharging station may be directly or indirectly connected to one or more solar panels that generate energy to power the recharging station. The ground station may be deployed virtually anywhere, from any vehicle (e.g., plane, train, boat, truck, etc.), and may operate over an extended period of time without human intervention.
Abstract:
A computer-implemented method of communicating with an unmanned aerial vehicle includes transmitting a first message via a communications transmitter of a lighting assembly for receipt by an unmanned aerial vehicle. The first message includes an identifier associated with the lighting assembly, and the lighting assembly is located within a proximity of a roadway. The method also includes receiving a second message from the unmanned aerial vehicle via a communications receiver of the lighting assembly. The second message includes an identifier associated with the unmanned aerial vehicle. The method further includes transmitting a third message via the communications transmitter of the lighting assembly for receipt by the unmanned aerial vehicle. The third message includes an indication of an altitude at which the unmanned aerial vehicle should fly.
Abstract:
This disclosure describes a system and method for operating an automated aerial vehicle wherein influences of a ground effect may be utilized for sensing the ground or other surfaces. In various implementations, an operating parameter of the automated aerial vehicle may be monitored to determine when a ground effect is influencing the parameter, which correspondingly indicates a proximity to a surface (e.g., the ground). In various implementations, the ground effect based sensing techniques may be utilized for determining a proximity to the ground, as a backup for a primary sensor system, for determining if a landing location is uneven, etc.
Abstract:
The present invention discloses an unmanned helicopter, and belongs to the technical field of unmanned aerial vehicles. The unmanned helicopter includes an air inlet system, an exhaust system, a cooling system and a dynamic balance system. The air inlet system is fixed on a second side; the exhaust system is fixed on a third side; and the cooling system is fixed on a first side, and the dynamic balance system is fixed on a tail. The airflow at the outside of the unmanned helicopter flows into the air inlet system smoothly, quickly and efficiently under the action of its own flow velocity relative to the unmanned helicopter, therefore the technical problem in the prior art that the air entering the fuselage with a unit volume is burnt insufficiently, which generates adverse effects on the normal flight of the unmanned helicopter, is solved.
Abstract:
An unmanned aerial vehicle (UAV) copter for consumer photography or videography can be launched by a user throwing the UAV copter into mid-air. The UAV copter can detect that the UAV copter has been thrown upward while propeller drivers of the UAV copter are inert. In response to detecting that the UAV copter has been thrown upward, the UAV copter can compute power adjustments for propeller drivers of the UAV copter to have the UAV copter reach a predetermined elevation above an operator device. The UAV copter can then supply power to the propeller drivers in accordance with the computed power adjustments.
Abstract:
Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative UAV may include a housing, a payload, a line-deployment mechanism coupled to the housing and a line, and a payload-release mechanism that couples the line to the payload, wherein the payload-release mechanism is configured to release the payload from the line. The UAV may further include a control system configured to determine that the UAV is located at or near a delivery location and responsively: operate the line-deployment mechanism according to a variable deployment-rate profile to lower the payload to or near to the ground, determine that the payload is touching or is within a threshold distance from the ground, and responsively operate the payload-release mechanism to release the payload from the line.
Abstract:
[Object] To provide a control device that can make more efficient an inspection performed by a flying body capable of performing imaging. [Solution] Provided is a control device including an acquisition unit configured to acquire information related to an overview of a structure, and a flight information generating unit configured to generate flight information of a flying body being caused to fly over a periphery of the structure to image the structure on the basis of the information acquired by the acquisition unit. The control device generates information used to cause the flying body to image the structure, and thereby makes it possible to make more efficient the inspection performed by the flying body capable of performing imaging.
Abstract:
A method of tracking a moving target from an air vehicle comprising determining an estimated location and speed of a moving target and instructing an air vehicle to follow the moving target, wherein the method further comprises: a) determining a detectability zone surrounding the moving target; b) calculating at least one reference location for the air vehicle; c) generating at least one guidance reference to command the air vehicle for tracking the moving target, wherein the guidance reference comprises any combination of one or more of at least: c.1) a desired course; c.2) a desired speed; c.3) a desired flying altitude; and wherein the method further comprises: d) instructing the air vehicle to fly according to the generated guidance reference; wherein the determination of the detectability zone, the calculation of a reference location and the generation of the guidance reference are performed according to at least one behavior policy.
Abstract:
The present invention relates to an electrochemical cell characterised in that it comprises at least a positive electrode which comprises manganese oxide physically separated from at least a negative electrode which comprises an aluminium alloy, and wherein said positive and negative electrodes are electrically connected through a neutral pH electrolyte. Further, the present invention relates to the use of the electrochemical cell, preferably as a button battery in hearing aids.