초경합금 분말의 산화방지법
    31.
    发明授权
    초경합금 분말의 산화방지법 失效
    防止硬质金属粉末氧化的方法

    公开(公告)号:KR100165722B1

    公开(公告)日:1999-01-15

    申请号:KR1019950010063

    申请日:1995-04-27

    Inventor: 박종구 김소나

    CPC classification number: C22C29/08 B22F1/0085

    Abstract: 본 발명은 초경합금의 제조 과정 중에서 분쇄가 끝난 초경합금 분말을 진공중 300℃ 내지 500℃에서 1시간 이상 열처리하는 것으로 이루어지는 초경합금 제조시의 초경합금 분말의 산화를 감소시키는 방법에 관한 것이다.

    다이아몬드 합성방법
    33.
    发明授权
    다이아몬드 합성방법 失效
    金刚石合成

    公开(公告)号:KR1019960002191B1

    公开(公告)日:1996-02-13

    申请号:KR1019930004832

    申请日:1993-03-26

    Abstract: The synthesis method of a diamond is characterized by (a) laminating and arranging complex solvent metal plates(6) comprising a medium layer(4) and an outer layer(5) between high purity graphite plates(3), (b) inserting the laminated and arranged sample into the high pressure vessel, and (c) heating the sample at 43˜48kbar and 1290˜1320deg. C to form a diamond particle(D) in the pores(5a) of the outer layer. The solvent metal of the medium layer is Ni or Co, and the solvent metal of the outer layer is Fe, Ni or Ni-Fe alloy.

    Abstract translation: 金刚石的合成方法的特征在于:(a)在高纯度石墨板(3)之间层压和排列包括中等层(4)和外层(5)的复杂溶剂金属板(6),(b)将 层压和排列的样品进入高压容器,(c)加热样品在43〜48kbar和1290〜135℃。 以在外层的孔(5a)中形成金刚石颗粒(D)。 中层溶剂金属为Ni或Co,外层溶剂金属为Fe,Ni或Ni-Fe合金。

    다이아몬드 합성방법
    34.
    发明授权
    다이아몬드 합성방법 失效
    金刚石合成

    公开(公告)号:KR1019960000943B1

    公开(公告)日:1996-01-15

    申请号:KR1019920022102

    申请日:1992-11-23

    Abstract: Diamond is synthesized by stacking graphite plates(1) and solvent metallic plates(2) alternated at high temperature under high pressure. Especially intermediate layer(4) is inserted between the solvent metallic plates to form same numbers of diamond particles(3) on the upper and lower sides of the solvent metallic plate. The intermediate layer is tungsten or molybdenium thin film with 10-100 micron thickness. This method can control the density of diamond particles, and so diamond of good quality can be obtained.

    Abstract translation: 金刚石是通过堆叠在高压下高压交替的石墨板(1)和溶剂金属板(2)来合成的。 特别是在溶剂金属板之间插入中间层(4),以在溶剂金属板的上侧和下侧形成相同数量的金刚石颗粒(3)。 中间层是厚度为10-100微米的钨或钼薄膜。 该方法可以控制金刚石颗粒的密度,因此可以获得质量好的金刚石。

    다이아몬드 합성방법
    35.
    发明公开

    公开(公告)号:KR1019940021419A

    公开(公告)日:1994-10-17

    申请号:KR1019930004832

    申请日:1993-03-26

    Abstract: 본 발명은 흑연판과 용매금속판을 교대로 적층배열한 후 고압용기중에서 고압, 고온을 가하여 다이아몬도를 합성시키는 방법에서 다이아몬드의 형성밀도 제어가 가능하도록 한 것이다.
    본 발명은 용매금속판을 이중금속의 중간층과 양 바깥층으로 이루어진 복합 용매금속판으로 구성하고 양 바깥층의 내부에는 통공을 형성하여 다이아몬드의 형성이 이들 통공부위에서만 일어나도록 한 것이다.
    따라서, 본 발명은 일정 합성조건에서 각 용매금속의 두께와 통공의 크기 및 밀도를 조절하는 것에 의해 합성되어지는 다이아몬드 분립체의 크기와 밀도를 인위적으로 제어하는 것이 가능하다는 이점이 있다.

    고효율 장수명 염료감응 태양전지 광전극용 이산화티타늄 나노분말 및 그 제조방법
    37.
    发明公开
    고효율 장수명 염료감응 태양전지 광전극용 이산화티타늄 나노분말 및 그 제조방법 有权
    用于制造高效和长寿命的透明太阳能电池的光电二极管二氧化钛纳米粒子及其制造方法

    公开(公告)号:KR1020120055397A

    公开(公告)日:2012-05-31

    申请号:KR1020100117123

    申请日:2010-11-23

    Abstract: PURPOSE: A titanium dioxide nano-powder for a dye-sensitized solar cell photoelectrode and a manufacturing method thereof are provided to enable dye molecules to be absorbed rapidly and photoelectric conversion to have high efficiency. CONSTITUTION: A titanium dioxide nano-powder for a dye-sensitized solar cell photoelectrode is titania nanopowder for anatase type dye-sensitized solar cell photoelectrode having a dipyramid structure. A specific surface area of the nano-powder is 80m/g or greater. An adhesion rate of paint to the nano-powder is more than 80% or greater within 5 minutes after contact. A manufacturing method of the titania nano-powder for the dye-sensitized solar cell photoelectrode comprises next steps: forming titania nano-powder with a vapor synthesis method by using precursors of titanium alkoxide; post-thermal treating the titania nanopowder; and forming anatase type titania nanopowder having an angular shape.

    Abstract translation: 目的:提供一种染料敏化太阳能电池光电二极管纳米粉末及其制造方法,使染料分子迅速吸收,光电转换效率高。 构成:用于染料敏化太阳能电池光电极的二氧化钛纳米粉末是具有双吡啶结构的锐钛矿型染料敏化太阳能电池光电极的二氧化钛纳米粉末。 纳米粉末的比表面积为80m / g以上。 接触后5分钟内,涂料对纳米粉末的附着率大于80%以上。 用于染料敏化太阳能电池光电极的二氧化钛纳米粉末的制造方法包括以下步骤:通过使用钛醇盐的前体,通过蒸气合成法形成二氧化钛纳米粉末; 后处理二氧化钛纳米粉末; 并形成具有角形状的锐钛矿型二氧化钛纳米粉末。

    멜라민을 이용하여 제조된 질화알루미늄 나노분말 및 그제조방법
    38.
    发明公开
    멜라민을 이용하여 제조된 질화알루미늄 나노분말 및 그제조방법 失效
    使用梅林制备的氮化铝纳米粒子及其制备方法

    公开(公告)号:KR1020080065159A

    公开(公告)日:2008-07-11

    申请号:KR1020070002203

    申请日:2007-01-08

    CPC classification number: C01B21/0726 B01J12/005 C01P2004/64 C04B35/581

    Abstract: Aluminum nitride nanopowders prepared by adding melamine and a preparation method of the aluminum nitride nanopowders are provided to synthesize aluminum nitride nanopowders which are more efficient in solving non-economic efficiencies such as high reaction temperatures and long reaction times that are problems of an existing synthetic method. A preparation method of an aluminum nitride nanopowder comprises: a first step of mixing a boehmite(AlOOH) powder, a carbon-containing powder, and a powder containing carbon and nitrogen; a second step of charging the mixed powder into a furnace; a third step of primarily heating the furnace under a hydrogen gas or nitrogen-containing gas atmosphere, thereby decomposing the boehmite powder to form aluminum oxide(Al2O3) that is reducible at low temperatures as an intermediate; and a fourth step of secondly heating the furnace at a temperature higher than that in the first heating process under an ammonia gas or nitrogen gas atmosphere, thereby reacting the intermediate with a carbon component and a nitrogen component to reduce the intermediate and nitride aluminum at the same time. The preparation method further comprises the step of maintaining temperature of the resulting material at a final process temperature for 1 to 5 hours after performing the second heating process of the fourth step. Further, a mixing ratio of the boehmite(AlOOH) powder, the powder containing carbon and nitrogen and the carbon-containing powder is 1.00:0.36:0.20 to 1.00:5.35:3.00.

    Abstract translation: 提供通过加入三聚氰胺制备的氮化铝纳米粉末和氮化铝纳米粉末的制备方法来合成氮化铝纳米粉末,这些氮化铝纳米粉末在解决诸如高反应温度和长反应时间等非经济效率方面更为有效,这是现有合成方法的问题 。 氮化铝纳米粉末的制备方法包括:将勃姆石(AlOOH)粉末,含碳粉末和含有碳和氮的粉末混合的第一步骤; 将混合粉末装入炉中的第二步骤; 在氢气或含氮气体气氛下主要加热炉的第三步骤,从而分解勃姆石粉末以形成可在低温下作为中间体还原的氧化铝(Al2O3); 以及第四步骤,在氨气或氮气气氛下,以高于第一加热过程的温度第二次加热炉,由此使中间体与碳组分和氮组分反应,以使中间体和氮化铝在 同时。 制备方法还包括在进行第四步骤的第二加热处理之后,将所得材料的温度保持在最终工艺温度1至5小时的步骤。 此外,勃姆石(AlOOH)粉末,含有碳和氮的粉末和含碳粉末的混合比为1.00:0.36:0.20至1.00:5.35:3.00。

    탄소소재층을 포함하는 염료감응 태양전지용 상대전극 및이의 제조방법
    39.
    发明公开
    탄소소재층을 포함하는 염료감응 태양전지용 상대전극 및이의 제조방법 有权
    用于透明光电池的计数器电极装备的碳化合物层及其制备方法

    公开(公告)号:KR1020080033764A

    公开(公告)日:2008-04-17

    申请号:KR1020060099903

    申请日:2006-10-13

    Abstract: A counter electrode having carbon compound layer for dye-sensitized photovoltaic cell and a method for manufacturing the same are provided to reduce a manufacturing cost and improve durability by forming the counter electrode using an adhesion layer and the carbon compound layer. A dye-sensitized photovoltaic cell comprises an optical electrode(10), a counter electrode(20) located to be faced to the optical electrode, an electrolyte(30). The counter electrode is formed by stacking the adhesion layer and a carbon compound layer(23) sequentially on a conductive substrate(21) for the counter electrode. The electrolyte is distributed uniformly within a metal oxide nano particle layer(12) as a porous film in a space between the optical electrode and the counter electrode.

    Abstract translation: 提供了具有用于染料敏化光伏电池的碳化合物层的对电极及其制造方法,通过使用粘合层和碳化合物层形成对电极来降低制造成本并提高耐久性。 染料敏化光伏电池包括光电极(10),与电极相对的相对电极(20),电解质(30)。 相对电极通过在对置电极的导电性基板(21)上依次堆叠粘合层和碳化合物层(23)而形成。 在光电极和对电极之间的空间中,电解质均匀地分布在作为多孔膜的金属氧化物纳米粒子层(12)内。

    나노분말 연소반응기와, 그 나노분말 연소반응기를 이용한나노분말 합성장치와, 그 나노분말 합성장치의 제어방법
    40.
    发明公开
    나노분말 연소반응기와, 그 나노분말 연소반응기를 이용한나노분말 합성장치와, 그 나노분말 합성장치의 제어방법 有权
    用于纳豆的燃烧反应器,具有燃烧反应器的纳米器的合成装置和控制合成装置的方法

    公开(公告)号:KR1020060124479A

    公开(公告)日:2006-12-05

    申请号:KR1020050046430

    申请日:2005-05-31

    Abstract: A nanopowder combustion reactor of which structure is optimized to prevent oxides from being deposited on an inner wall of a reaction nozzle, secure uniformity of a flame and accurately control temperature of the flame, a nanopowder synthesizing system using the nanopowder combustion reactor, and a method of controlling the nanopowder synthesizing system are provided. A nanopowder combustion reactor(10) comprises: an oxidizing gas supply nozzle(12) to which an oxidizing gas pipe(11) is connected; a gas supply part(15) having a fuel gas pipe(13) and a precursor gas pipe(14); and a reaction nozzle(18) which forms a concentric circle together with the oxidizing gas supply nozzle within the oxidizing gas supply nozzle, is connected to the gas supply part, and has oxidizing gas inflow holes(17) disposed at positions thereof adjacent to an injection port(16) for injecting a flame. The nanopowder combustion reactor comprises a backflow prevention plate(19) which divides the interior of the reaction nozzle, to which the precursor gas pipe is penetratingly connected, and on which a plurality of pores are formed to pass a fuel gas and prevent backflow of a precursor gas.

    Abstract translation: 优化其结构的纳米粉燃烧反应器,以防止氧化物沉积在反应喷嘴的内壁上,确保火焰的均匀性和精确控制火焰的温度,使用纳米粉末燃烧反应器的纳米粉末合成系统,以及方法 提供了控制纳米粉体合成系统的方法。 纳米粉燃烧反应器(10)包括:氧化气体供给喷嘴(12),氧化气体管道(11)连接到所述氧化气体供应喷嘴; 具有燃气管(13)和前体气管(14)的气体供给部(15)。 和在氧化剂气体供给喷嘴内与氧化剂气体供给喷嘴一起形成同心圆的反应喷嘴(18)与气体供给部连接,具有设置在与氧化气体供给喷嘴相邻的位置的氧化气体流入孔(17) 喷射口(16),用于喷射火焰。 该纳米粉燃烧反应器包括防反射板(19),其将反应喷嘴的内部分开,前体气体管道穿过其连接,其上形成有多个气孔以通过燃料气体并防止 前体气体。

Patent Agency Ranking