Abstract:
본 발명은 컴퓨터 시뮬레이션 방법을 사용한 무한궤도 트랙 전단 변위 산출 방법을 제공한다. 상기 트랙 전단 변위 산출 방법은 서로 나란하게 연결되는 다수의 트랙 링크를 하나의 강체로 설정하는 제 1단계와, 상기 다수의 트랙 링크의 전체 구간에서 전단 변위가 변화되는 제 1구간과, 일정하게 형성되는 제 2구간을 설정하는 제 2단계와; 상기 제 1구간의 전단 변위를 직선을 산출하는 제 3단계와; 상기 트랙의 속도를 포함하여, 상기 제 1구간 및 상기 제 2구간에서의 전단 변위 변화를 상기 직선 상에서 추적하여 산출하는 제 4단계를 포함한다.
Abstract:
The present invention relates to a motion control device and method of a buffer system for deep sea mineral mining, which controls the heading direction of the buffer system so as to a reference direction error occurring between a surface vehicle and the buffer system by means of a fastening error of a lifting pipe connected by a plurality of pipes and reduces the pendulum motion of the buffer system expected upon the turning motion of the buffer system or upon the variation of the mining processing speed. According to the present invention, the motion control device of a buffer system for deep sea mineral mining includes: a heading direction sensing part sensing the heading direction of the buffer system; a determination part receiving the heading direction information of the buffer system from the heading direction sensing part and comparing the received information with a set value; a controller conducting the control for the balancing of the buffer system if an error value determined from the determination part is more than the set value; and a first driving part or a second driving part actuated to maintain the balance of the buffer system under the control of the controller, wherein either the first driving part or the second driving part is actuated or both of the first driving part and the second driving part are actuated at the same time.
Abstract:
The present invention relates to a buffer system and, more particularly, to a joint structure of a buffer system which reduces load applied to slurry conveying pipes connected to upper and lower ends of the buffer system and is disposed on the upper and lower ends of the buffer system to provide the degree of freedom in rotation, while being stably used in deep sea through a pressure compensation means. According to the present invention, the joint structure of the buffer system includes a first joint located on the uppermost end of the buffer system and having the lower end fastened to the buffer system and the upper end fastened to a mineral resource lifting pipe; a second joint located on the lower end of the buffer system and having the upper end fastened to the buffer system and the lower end fastened to the upper end of a third joint; and the third joint having the upper end fastened to the lower end of the second joint and the lower end fastened to a mineral resource conveying pipe, wherein the first to third joints have pressure in the deep sea compensated by the pressure compensator.
Abstract:
본 발명은 슬라이딩기구와 와유기진동에 의한 양력발전장치에 관한 것으로서, 더욱 상세하게는 조류, 해류, 하천 유동 등의 유체 유동에너지를 전기에너지 등의 유용한 에너지로 변환하는 기술로써, 오염원을 추가적으로 발생시키지 않고, 설치 및 운용시 환경에 영향이 거의 없는 친환경 에너지이며, 유체 유동이 실린더에 작용하는 와유기력에 의해 양력면 전,후부에 연결된 실린더가 회전 진동하여 양력면의 유체 받음각을 발생시킴으로써, 양력면에 상,하 기진력을 유도하며, 상,하 스프링으로 지지된 양력면이 공진함으로써 에너지추출효율을 최대화하는 특징이 있다.
Abstract:
PURPOSE: An extraction device for vortex induced vibration energy with an ellipsoidal cross section cylinder is provided to provide a vortex generation cylinder which is formed in an optimal aspect ratio of a cross section for obtaining improved energy extraction efficiency through hydrostatic analysis. CONSTITUTION: An extraction device for vortex induced vibration energy with an ellipsoidal cross section cylinder comprises a vortex generation cylinder(100), an energy transmission device(200), and a power generation device(300). The vortex generation cylinder vertically vibrates by generating a vortex on the surface by the vortex exfoliation due to the flow of fluid. The aspect ratio of the ellipsoidal cross section is 0.3-0.5. The energy transmission device transmits kinetic energy of a vortex vibration which is generated in the vortex generation cylinder. The power generation device converts the kinetic energy of the vortex vibration which is transmitted through the energy transmission device to electric power. The cross section of the vortex generation cylinder has an ellipsoidal shape. The power generation device converts kinetic energy of a linear reciprocating which is transmitted due to the vortex vibration generated by the vortex generation cylinder to electric energy. The energy transmission device connects the power generating device with the vortex generation cylinder and transmits linear reciprocating kinetic energy to the power generation device which is generated by the vortex vibration of the vortex generation cylinder. [Reference numerals] (200) Energy transmission device; (300) Power generation device
Abstract:
본 발명은 메쉬 데이터 모델링 시스템에 관한 것으로서, 더욱 상세하게는 상용 밸브의 다학제 기반 해석을 위한 xml 기반 메쉬 데이터 모델링 시스템 및 그 방법에 관한 것이다. 본 발명의 상용 밸브의 다학제 기반 해석을 위한 xml 기반 메쉬 데이터 모델링 시스템은 외부로부터 수신하는 설계 표준화 코드를 분석하여 모델링 대상의 파라미터를 선정하는 파라미터 선정부; 선정된 파라미터를 전달받아 CAD 모델을 생성하는 CAD 모델부; 및 CAD 모델을 기반으로 모델링 및 메쉬를 생성하는 메쉬 생성부;를 포함하여 버터플라이 밸브에 특화되어 설계 인자부터 해석까지 자동화 프로세스로 진행할 수 있고, CAD 모델을 통한 Mesh 생성의 자동화할 수 있으며, 각 학제에 적합한 Mesh 모델을 제공할 수 있고, 다학제 해석 진행이 가능한 효과가 있다.
Abstract:
The present invention relates to a robot for collecting deep sea manganese nodules using a Coanda effect, and more particularly, to a robot for collecting deep sea manganese nodules using a Coanda effect through collecting units, while running deep sea. According to the present invention, the robot for collecting deep sea manganese nodules using a Coanda effect includes: a plurality of running units detachably mounted on the lower portion thereof in a parallel relation with each other; collecting units disposed on the front end of the running units, forming hydraulic jet flowing to cause the Coanda effect by diffusion, and floating the manganese nodules to introduce the manganese nodules into the robot; transmitting units disposed on the top of the running units and pulverizing the collected manganese nodules to a given size or less to transmit the pulverized manganese nodules to the outside; a power control measuring unit disposed on the top of the running units so as to supply power to the running units and control the driving of the collecting units and the transmitting units; structure frames supporting the collecting units, the transmitting units and the power control measuring unit; and buoyancy units disposed on the top ends of the structure frames.