Abstract:
A method including: obtaining a measurement of a metrology target on a substrate processed using a patterning process, the measurement having been obtained using measurement radiation; and deriving a parameter of interest of the patterning process from the measurement, wherein the parameter of interest is corrected by a stack difference parameter, the stack difference parameter representing an un-designed difference in physical configuration between adjacent periodic structures of the target or between the metrology target and another adjacent target on the substrate.
Abstract:
A lithographic process is used to form a plurality of target structures (92, 94) distributed at a plurality of locations across a substrate and having overlaid periodic structures with a number of different overlay bias values distributed across the target structures. At least some of the target structures comprise a number of overlaid periodic structures (e.g., gratings) that is fewer than said number of different overlay bias values. Asymmetry measurements are obtained for the target structures. The detected asymmetries are used to determine parameters of a lithographic process. Overlay model parameters including translation, magnification and rotation, can be calculated while correcting the effect of bottom grating asymmetry, and using a multi-parameter model of overlay error across the substrate.
Abstract:
A method to determine a patterning process parameter, the method comprising: for a target, calculating a first value for an intermediate parameter from data obtained by illuminating the target with radiation comprising a central wavelength; for the target, calculating a second value for the intermediate parameter from data obtained by illuminating the target with radiation comprising two different central wavelengths; and calculating a combined measurement for the patterning process parameter based on the first and second values for the intermediate parameter.
Abstract:
Corrections are calculated for use in controlling a lithographic apparatus. Using a metrology apparatus a performance parameter is measured at sampling locations across one or more substrates to which a lithographic process has previously been applied. A process model is fitted to the measured performance parameter, and an up-sampled estimate is provided for process-induced effects across the substrate. Corrections are calculated for use in controlling the lithographic apparatus, using an actuation model and based at least in part on the fitted process model. For locations where measurement data is available, this is added to the estimate to replace the process model values. Thus, calculation of actuation corrections is based on a modified estimate which is a combination of values estimated by the process model and partly on real measurement data.
Abstract:
An overlay metrology target (T) is formed by a lithographic process. A first image (740(0)) of the target structure is obtained using with illuminating radiation having a first angular distribution, the first image being formed using radiation diffracted in a first direction (X) and radiation diffracted in a second direction (Y). A second image (740(R)) of the target structure using illuminating radiation having a second angular illumination distribution which the same as the first angular distribution, but rotated 90 degrees. The first image and the second image can be used together so as to discriminate between radiation diffracted in the first direction and radiation diffracted in the second direction by the same part of the target structure. This discrimination allows overlay and other asymmetry-related properties to be measured independently in X and Y, even in the presence of two-dimensional structures within the same part of the target structure.
Abstract:
A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
Abstract:
A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
Abstract:
A method and apparatus for obtaining focus information relating to a lithographic process. The method includes illuminating a target, the target having alternating first and second structures, wherein the form of the second structures is focus dependent, while the form of the first structures does not have the same focus dependence as that of the second structures, and detecting radiation redirected by the target to obtain for that target an asymmetry measurement representing an overall asymmetry of the target, wherein the asymmetry measurement is indicative of focus of the beam forming the target. An associated mask for forming such a target, and a substrate having such a target.
Abstract:
A method including: determining recipe consistencies between one substrate measurement recipe of a plurality of substrate measurement recipes and each other substrate measurement recipe of the plurality of substrate measurement recipes; calculating a function of the recipe consistencies; eliminating the one substrate measurement recipe from the plurality of substrate measurement recipes if the function meets a criterion; and reiterating the determining, calculating and eliminating until a termination condition is met. Also disclosed herein is a substrate measurement apparatus, including a storage configured to store a plurality of substrate measurement recipes, and a processor configured to select one or more substrate measurement recipes from the plurality of substrate measurement recipes based on recipe consistencies among the plurality of substrate measurement recipes.
Abstract:
A method and apparatus for obtaining focus information relating to a lithographic process. The method includes illuminating a target, the target having alternating first and second structures, wherein the form of the second structures is focus dependent, while the form of the first structures does not have the same focus dependence as that of the second structures, and detecting radiation redirected by the target to obtain for that target an asymmetry measurement representing an overall asymmetry of the target, wherein the asymmetry measurement is indicative of focus of the beam forming the target. An associated mask for forming such a target, and a substrate having such a target.