Abstract:
A protective photochromic barrier film for a light-sensitive printed electronic substrate. Light-sensitive semiconductor devices on a dielectric substrate are electrically connected by conductors. A barrier layer containing photochromic dyes covers some or all of the light-sensitive semiconductor devices. Upon exposure to visible, infrared, or ultraviolet light, the photochromic dyes change chemical structure and decrease the amount of visible or non-visible light that can impinge upon the light-sensitive electronic devices. Upon removal of the visible or non-visible light, the photochromic dyes either revert to their original structure or maintain their altered state.
Abstract:
Two or more semiconductor devices (21 and 22) are formed on a substrate (20) and are each comprised of a plurality of printed components (23 and 24). At least one such printed component (25) is shared by both such semiconductor devices.
Abstract:
A printed electronic device and methods for determining the electrical value of the device. A dielectric material is contact printed on a substrate using a preset force. The substrate has a pressure sensitive material that is optically responsive in direct proportion to the amount of force imparted by the contact printing. The force of the contact printing causes the pressure sensitive material to form a pattern that is quantifiable to the amount of force. The pattern is then optically inspected and compared to sets of standards in order to quantify the amount of force that was used in printing. The thickness of the printed dielectric material is then calculated based on the quantified force by comparing to another set of standards. The electrical value of the printed material is calculated based on the calculated thickness of the printed dielectric material, the surface area of the printed dielectric material, and the dielectric constant of the dielectric material.
Abstract:
A semiconductor device having a flexible or rigid substrate (11) having a gate electrode (21), a source electrode (61 and 101), and a drain electrode (62 and 102) formed thereon and organic semiconductor material (51, 81, and 91) disposed at least partially thereover. The gate electrode (21) has a thin dielectric layer 41 formed thereabout through oxidation. In many of the embodiments, any of the above elements can be formed through contact or non-contact printing. Sizing of the resultant device can be readily scaled to suit various needs.
Abstract:
A semiconductor device comprising a flexible or rigid substrate (10) having a gate electrode (11), a source electrode (12), and a drain electrode (13) formed thereon and organic semiconductor material (14) disposed at least partially thereover. With appropriate selection of material, the gate electrode (11) will form a Schottky junction and an ohmic contact will form between the organic semiconductor material (14) and each of the source electrode (12) and drain electrode (13). In many of the embodiments, any of the above elements can be formed through contact or non-contact printing. Sizing of the resultant device can be readily scaled to suit various needs.