Abstract:
A method and apparatus for writing to solid-state memory is provided herein. In particular, a controller is provided that monitors operating parameters of each die within the system. In order to enable fast, real-time write operations, feedback from each die is analyzed and compared with a stored set of operating parameters. Based on this comparison, a particular die is chosen for write operations such that system performance is optimized.
Abstract:
Two or more semiconductor devices (21 and 22) are formed on a substrate (20) and are each comprised of a plurality of printed components (23 and 24). At least one such printed component (25) is shared by both such semiconductor devices.
Abstract:
A functional ink (200) suitable for use as a dielectric layer (303) in a printed semiconductor device (300) comprises a dielectric carrier (201) and a plurality of dielectric particles (202) sized less than about 1,000 nanometers that are disposed within the dielectric carrier. In a preferred approach the dielectric carrier comprises a dielectric resin and the dielectric particles comprise a ferroelectric material (such as, but not limited to, BaTiO 3 . So provided, this functional ink can be applied to a substrate (301) of choice through a printing technique of choice to thereby provide a resultant printed semiconductor device, such as a field effect transistor, having a relatively thin dielectric layer comprised of this functional ink.
Abstract translation:适合用作印刷半导体器件(300)中的电介质层(303)的功能油墨(200)包括电介质载体(201)和尺寸小于约1000纳米的多个电介质颗粒(202) 电介质载体。 在优选的方法中,电介质载体包括电介质树脂,并且电介质颗粒包含铁电材料(例如但不限于BaTiO 3 N 3)。因此,该功能性油墨可以应用于基底 (301),通过选择的打印技术来选择,从而提供具有由该功能性墨水组成的相对薄的介电层的所得印刷半导体器件,例如场效应晶体管。
Abstract:
An inverter circuit (500) having a drive transistor (102) that operably couples to a voltage bias input (101) (and where that drive transistor controls the inverter circuit output by opening and closing a connection between the output (105) and ground (104)) is further operably coupled to a feedback switch (401). In a preferred approach the feedback switch is itself also operably coupled to the voltage bias input and the output and preferably serves, when the drive transistor is switched "off", to responsively couple the voltage bias input to the drive transistor in such a way as to cause a gate terminal of the drive transistor to have its polarity relative to a source terminal of the drive transistor reversed and hence permit the inverter circuit to operate across a substantially full potential operating range of the drive transistor.
Abstract:
An apparatus (200) such as a semiconductor device comprises a gate electrode (201) and at least a first electrode (202). The first electrode preferably has an established perimeter that at least partially overlaps with respect to the gate electrode to thereby form a corresponding transistor channel. In a preferred approach the first electrode has a surface area that is reduced notwithstanding the aforementioned established perimeter. This, in turn, aids in reducing any corresponding parasitic capacitance. This reduction in surface area may be accomplished, for example, by providing openings (203) through certain portions of the first electrode.
Abstract:
A low-temperature process for creating a semiconductive device by printing a liquid composition containing semiconducting nanoparticles. The semiconductive device is formed on a polymeric substrate (22) by printing a composition that contains nanoparticles of inorganic semiconductor suspended in a carrier, using a graphic arts printing method. The printed deposit is then heated to remove substantially all of the carrier from the printed deposit (25). The low-temperature process does not heat the substrate or the printed deposit above 300° C. The mobility of the resulting semiconductive device is between about 10 cm2/Vs and 200 cm2/Vs.
Abstract:
Two or more semiconductor devices (21 and 22) are formed on a substrate (20) and are each comprised of a plurality of printed components (23 and 24). At least one such printed component (25) is shared by both such semiconductor devices.
Abstract:
A printing platform receives (102) (preferably in-line with a semiconductor device printing process (101)) a substrate having at least one semiconductor device printed thereon and further having a test structure printed thereon, which test structure comprises at least one printed semiconductor layer. These teachings then provide for the automatic testing (103) of the test structure with respect to at least one static (i.e., relatively unchanging) electrical characteristic metric. The static electrical characteristic metric (or metrics) of choice will likely vary with the application setting but can include, for example, a measure of electrical resistance, a measure of electrical reactance, and/or a measure of electrical continuity. Optionally (though preferably) the semiconductor device printing process itself is then adjusted (105) as a function, at least in part, of this metric.