Abstract:
PROBLEM TO BE SOLVED: To propose a vertical bipolar transistor which has a reduced low-frequency noise and allowable static parameters. SOLUTION: This vertical bipolar transistor includes an intrinsic collector 4 on an extrinsic collector layer 2 buried in a semiconductor substrate, a side separation area 5 surrounding the upper part of the intrinsic collector 4, an offset extrinsic collector well 60, a base 8 which is arranged on the intrinsic collector 4 and side separation area 5 and is composed of a semiconductor area including at least one silicon layer, and two doped emitters 11 surrounded with the base 8. The emitters 11 include a first part 110 which is made of single crystal and is directly in contact with the upper surface in the predetermined window 800, and a second part 111 formed of polycrystal. These two parts are isolated by an isolated oxide layer 112 arranged at an optional distance apart from an emitter base joint part.
Abstract:
PROBLEM TO BE SOLVED: To avoid self-doping by etching a Si substrate by a specified thickness with a silicon chloride compound gas introduced before depositing in the vapor phase epitaxial deposition on the Si substrate having high-concentration dopant regions. SOLUTION: In the vapor phase epitaxial deposition on a Si substrate 1 having dopant regions 6, 7 containing boron at a high concentration, the initial annealing is selectively made and the epitaxial deposition is made for a given time to obtain an epitaxial layer 5 having a desired usual thickness. Before the epitaxial deposition, a silicon chloride compound gas is introduced to etch the Si substrate 1 by a thickness of about 100 nm or less to thereby remove a self-doped layer of boron to the epitaxial layer 5. Thus the self-doping of boron to the epitaxial layer 5 is reduced.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of manufacturing a MOS transistor comprising a single crystal semiconductor film with no facets that is formed on a void portion, a laminated structure of single crystal thin films that prevents reduction in the device surface area, and a channel region that has a homogeneous thickness and is separated from an underlying semiconductor wafer by at least one non-single crystal layer with a homogeneous thickness. SOLUTION: A method of forming a single crystal semiconductor film portion separated from a substrate comprises: a step of growing a single crystal semiconductor sacrifice film 38 and a single crystal semiconductor film 40 on a single crystal semiconductor active region in an insulation region 34 by selective epitaxial growth; a step of at least partially removing the raised insulation region 34; a step of removing the single crystal semiconductor sacrifice film 38 from the side, leaving a void; and a step of filling the void with an insulator, an electrical conductor, or a heat conductor. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To limit doping of a growth layer without increasing boron self-doping, by a method wherein an epitaxially grown silicon layer is deposited on a single crystalline silicon substrate that comprises zones of high concentrations of arsenic or phosphorus restraining it from being self-doped with arsenic or phosphorus. SOLUTION: Germanium compound as GeH4 gas is added in the gas phase during an annealing time from a point of time t5 to a point of time t6, a deposition process is stopped from a point, of time t6 to a point, of time t2, and a time t5 to t6 for adding a compound GeH4 is selectively set at ten seconds to tens of seconds. After Ge is deposited, hydrogen is purged for a time (tens of seconds) t6 to t2 at a temperature T1. An epitaxially grown silicon layer is self-doped for a time t3 to t4 and a block doped with arsenic and a non-doped block are formed at this deposition of Ge. Ge is deposited on a second test wafer of an epitaxially grown non-doped silicon layer for a time t5 to t6, and hydrogen is adsorbed and/or desorbed.
Abstract:
PROBLEM TO BE SOLVED: To provide a manufacturing method for a transistor with a germanium-rich channel and fully-depleted type architecture that can be easily manufactured on an arbitrary substrate and that can easily control the formation of the channel. SOLUTION: The manufacturing method for a MOS transistor comprises (a) a step to form a half-conductive interlayer 6 containing alloy of silicon and germanium on a substrate 2, (b) step to manufacture the source region, drain region and insulating gate regions 11, 12 and 9 of the transistor on the interlayer 6, and (c) step to oxidize the interlayer 6 starting with the bottom surface of the interlayer 6 to raise the concentration of germanium within the channel of the transistor. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
L'invention concerne un procédé de fabrication de composants sur une couche de SOI (50) revêtue d'une couche de silicium-germanium (54) formée par dépôt épitaxial, dans lequel le bilan thermique des recuits réalisés après le dépôt épitaxial est tel que la concentration en germanium demeure plus élevée dans la couche épitaxiée que dans la couche de SOI.
Abstract:
Des portions monocristallines (2) à base de silicium sont réalisées sur une surface (S) d'un substrat (100), sélectivement dans des zones (101) où un matériau monocristallin est initialement découvert. Pour cela, une couche (1) est d'abord formée sur toute la surface du substrat, en utilisant un précurseur de silicium du type hydrure non-chloré, et dans des conditions adaptées de sorte que la couche est monocristalline dans les zones du substrat où un matériau monocristallin est initialement découvert, et amorphe en dehors de ces zones. Les portions amorphes de la couche (1) sont ensuite sélectivement gravées, de sorte que seules les portions monocristallines (2) de la couche restent sur le substrat.
Abstract:
L'invention concerne un procédé de formation d'une portion de couche semiconductrice monocristalline (40) au dessus d'une zone évidée, comprenant les étapes consistant à faire croître par épitaxie sélective sur une région active semiconductrice monocristalline (32) une couche semiconductrice monocristalline sacrificielle (38) et une couche semiconductrice monocristalline (40), et éliminer la couche sacrificielle (38). La croissance épitaxiale est réalisée alors que la région active est entourée d'une couche isolante en surépaisseur (34) et l'élimination de la couche semiconductrice monocristalline sacrificielle (38) est effectuée par un accès résultant d'une élimination au moins partielle de la couche isolante en surépaisseur.