Abstract:
PROBLEM TO BE SOLVED: To reduce low frequency noise while sustaining accurate current amplification factor by obtaining an emitter region of single crystal silicon touching the upper layer of a stack, e.g. silicon of an upper encapsulation layer of the stack, directly on a window. SOLUTION: On a silicon substrate 1, a buried extrinsic collector layer 2 doped with n+ by implanting arsenic and two buried layers 3 similarly doped with p+ are formed and a thick n-type single crystal silicon layer 4 is grown epitaxially. Subsequently, an amorphous silicon layer 17 is deposited on a semiconductor block thus formed and etched above an oxide layer 6 to form a window 170 which is then subjected to desorption. Thereafter, a stack 8 is formed, a silicon dioxide layer 9 and a silicon nitride layer 10 are deposited thereon and then the layers 9, 10 are removed from a desired zone to obtain an emitter, i.e., an emitter window 800.
Abstract:
PROBLEM TO BE SOLVED: To propose a vertical bipolar transistor which has a reduced low-frequency noise and allowable static parameters. SOLUTION: This vertical bipolar transistor includes an intrinsic collector 4 on an extrinsic collector layer 2 buried in a semiconductor substrate, a side separation area 5 surrounding the upper part of the intrinsic collector 4, an offset extrinsic collector well 60, a base 8 which is arranged on the intrinsic collector 4 and side separation area 5 and is composed of a semiconductor area including at least one silicon layer, and two doped emitters 11 surrounded with the base 8. The emitters 11 include a first part 110 which is made of single crystal and is directly in contact with the upper surface in the predetermined window 800, and a second part 111 formed of polycrystal. These two parts are isolated by an isolated oxide layer 112 arranged at an optional distance apart from an emitter base joint part.
Abstract:
PROBLEM TO BE SOLVED: To avoid self-doping by etching a Si substrate by a specified thickness with a silicon chloride compound gas introduced before depositing in the vapor phase epitaxial deposition on the Si substrate having high-concentration dopant regions. SOLUTION: In the vapor phase epitaxial deposition on a Si substrate 1 having dopant regions 6, 7 containing boron at a high concentration, the initial annealing is selectively made and the epitaxial deposition is made for a given time to obtain an epitaxial layer 5 having a desired usual thickness. Before the epitaxial deposition, a silicon chloride compound gas is introduced to etch the Si substrate 1 by a thickness of about 100 nm or less to thereby remove a self-doped layer of boron to the epitaxial layer 5. Thus the self-doping of boron to the epitaxial layer 5 is reduced.
Abstract:
PROBLEM TO BE SOLVED: To provide a method of manufacturing a MOS transistor comprising a single crystal semiconductor film with no facets that is formed on a void portion, a laminated structure of single crystal thin films that prevents reduction in the device surface area, and a channel region that has a homogeneous thickness and is separated from an underlying semiconductor wafer by at least one non-single crystal layer with a homogeneous thickness. SOLUTION: A method of forming a single crystal semiconductor film portion separated from a substrate comprises: a step of growing a single crystal semiconductor sacrifice film 38 and a single crystal semiconductor film 40 on a single crystal semiconductor active region in an insulation region 34 by selective epitaxial growth; a step of at least partially removing the raised insulation region 34; a step of removing the single crystal semiconductor sacrifice film 38 from the side, leaving a void; and a step of filling the void with an insulator, an electrical conductor, or a heat conductor. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To limit doping of a growth layer without increasing boron self-doping, by a method wherein an epitaxially grown silicon layer is deposited on a single crystalline silicon substrate that comprises zones of high concentrations of arsenic or phosphorus restraining it from being self-doped with arsenic or phosphorus. SOLUTION: Germanium compound as GeH4 gas is added in the gas phase during an annealing time from a point of time t5 to a point of time t6, a deposition process is stopped from a point, of time t6 to a point, of time t2, and a time t5 to t6 for adding a compound GeH4 is selectively set at ten seconds to tens of seconds. After Ge is deposited, hydrogen is purged for a time (tens of seconds) t6 to t2 at a temperature T1. An epitaxially grown silicon layer is self-doped for a time t3 to t4 and a block doped with arsenic and a non-doped block are formed at this deposition of Ge. Ge is deposited on a second test wafer of an epitaxially grown non-doped silicon layer for a time t5 to t6, and hydrogen is adsorbed and/or desorbed.
Abstract:
PROBLEM TO BE SOLVED: To provide a manufacturing method for a transistor with a germanium-rich channel and fully-depleted type architecture that can be easily manufactured on an arbitrary substrate and that can easily control the formation of the channel. SOLUTION: The manufacturing method for a MOS transistor comprises (a) a step to form a half-conductive interlayer 6 containing alloy of silicon and germanium on a substrate 2, (b) step to manufacture the source region, drain region and insulating gate regions 11, 12 and 9 of the transistor on the interlayer 6, and (c) step to oxidize the interlayer 6 starting with the bottom surface of the interlayer 6 to raise the concentration of germanium within the channel of the transistor. COPYRIGHT: (C)2008,JPO&INPIT
Abstract:
L'invention concerne un Procédé de dépôt par épitaxie en phase gazeuse de silicium, de germanium ou de silicium-germanium sur une surface (35) semiconductrice monocristalline d'un substrat, ce procédé comprenant des étapes successives suivantes : disposer le substrat dans un réacteur d'épitaxie balayé par un gaz porteur ; porter la température du substrat à une première valeur ; introduire, pendant une première durée, au moins un premier gaz précurseur du silicium et/ou un gaz précurseur du germanium ; et réduire la température du substrat à une deuxième valeur, le procédé comprenant, à la fin de la première durée, le maintien de 1'introduction du premier gaz précurseur du silicium et/ou l'introduction d'un deuxième gaz précurseur du silicium, lesdits gaz ayant une pression partielle adaptée à former une couche de silicium ayant une épaisseur inférieure à 0, 5 nm.
Abstract:
L'invention concerne un procédé de fabrication de composants sur une couche de SOI (50) revêtue d'une couche de silicium-germanium (54) formée par dépôt épitaxial, dans lequel le bilan thermique des recuits réalisés après le dépôt épitaxial est tel que la concentration en germanium demeure plus élevée dans la couche épitaxiée que dans la couche de SOI.
Abstract:
La présente invention propose un procédé de réalisation d'un film mince d'un premier matériau saillant perpendiculairement à une surface plane d'un support, comprenant :a) une formation, au-dessus du support, d'un bloc d'un deuxième matériau comprenant au moins une paroi perpendiculaire à ladite surface plane,b) une formation d'une couche mince du premier matériau sur ladite paroi, etc) un retrait d'au moins une portion dudit bloc de deuxième matériau de manière à former le film mince de premier matériau.