Abstract:
A phase interpolator implemented in an integrated circuit to generate a clock signal is described. The phase interpolator comprises a plurality of inputs coupled to receive a plurality of clock signals; a plurality of transistor pairs, each transistor pair having a first transistor coupled to a first output node and a second transistor coupled to a second output node, wherein a first clock signal associated with the transistor pair is coupled to a gate of the first transistor and an inverted first clock signal associated with the transistor pair is coupled to a gate of the second transistor; a first active inductor load coupled to the first output node; and a second active inductor load coupled to the second output node.
Abstract:
In an example, a phase-locked loop (PLL) circuit includes an error detector operable to generate an error signal; an oscillator operable to provide an output signal having an output frequency based on the error signal and a frequency band select signal, the output frequency being a frequency multiplier times a reference frequency; a frequency divider operable to divide the output frequency of the output signal to generate a feedback signal based on a divider control signal; a sigma-delta modulator (SDM) operable to generate the divider control signal based on inputs indicative of an integer value and a fractional value of the frequency multiplier, the SDM responsive to an order select signal operable to select an order of the SDM; and a state machine operable to, in an acquisition state, generate the frequency band select signal and set the order of the SDM.
Abstract:
Voltage-controlled oscillation (100) is described. In an apparatus therefor, an inductor (120) has a tap and has or is coupled to a positive-side output node (105) and a negative side output node (106). The tap is coupled to receive a first current. A coarse grain capacitor array (130) is coupled to the positive-side output node (105) and the negative side output node (106) and is coupled to respectively receive select signals (168). A varactor (140) is coupled to the positive-side output node (105) and the negative side output node (106) and is coupled to receive a control voltage (143). The varactor (140) includes MuGFETs (141, 142). A transconductance cell (150) is coupled to the positive- side output node (105) and the negative side output node (106), and the transconductance cell (150) has a common node (107). A frequency scaled resistor network (160) is coupled to the common node (107) and is coupled to receive the select signals (168) for a resistance for a path for a second current.