Abstract:
It is intended to provide a membrane structure element that can be easily manufactured, has an excellent insulating property and high quality; and a method for manufacturing the membrane structure element. The manufacturing method is for manufacturing a membrane structure element including a membrane formed of a silicon oxide film and a substrate which supports the membrane in a hollow state by supporting a part of a periphery of the membrane. The method includes: a film formation step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD method; a heat treatment step of performing a heat treatment to cause the thermal shrinkage of the silicon oxide film 13 formed on the substrate 1; and a removal step of removing a part of the substrate 2 in such a manner that a membrane-corresponding part of the silicon oxide film 13 is supported as a membrane in a hollow state with respect to the substrate 2 to form a recessed part 4.
Abstract:
A micro-electro-mechanical (MEM) device and an electronic device are fabricated on a common substrate by fabricating the electronic device comprising a plurality of electronic components on the common substrate, depositing a thermally stable interconnect layer on the electronic device, encapsulating the interconnected electronic device with a protective layer, forming a sacrificial layer over the protective layer, opening holes in the sacrificial layer and the protective layer to allow the connection of the MEM device to the electronic device, fabricating the MEM device by depositing and patterning at least one layer of amorphous silicon, and removing at least a portion of the sacrificial layer. In this way, the MEM device can be fabricated after the electronic device on the same substrate.
Abstract:
A method of making a X-ray mask including: a step of forming a X-ray absorber above a substrate; a step of controlling a stress of the X-ray absorber by a predetermined condition; and wherein the predetermined condition for controlling the stress of the X-ray absorber formed above the substrate is determined by a measured value of a stress of a X-ray absorber formed on a monitor substrate.
Abstract:
A method for fabricating a nanostructure utilizes a templated monocrystalline substrate. The templated monocrystalline substrate is energetically (i.e., preferably thermally) treated, with an optional precleaning and an optional amorphous material layer located thereupon, to form a template structured monocrystalline substrate that includes the monocrystalline substrate with a plurality of epitaxially aligned contiguous monocrystalline pillars extending therefrom. The monocrystalline substrate and the plurality of epitaxially aligned contiguous monocrystalline pillars may comprise the same or different monocrystalline materials. The method provides the nanostructure where when the monocrystalline substrate and the plurality of epitaxial aligned contiguous monocrystalline pillars comprise different monocrystalline materials having a bulk crystal structure mismatch of up to about 10 percent, lattice mismatch induced crystal structure defects may be avoided interposed between the monocrystalline substrate and the plurality of epitaxially aligned contiguous monocrystalline pillars, which may have an irregular sidewall shape.
Abstract:
Es wird ein Verfahren zur Herstellung mikromechanischer Bauteile angegeben, die mindestens eine elastische Federzunge enthalten, wobei diese Federzunge insbesondere durch galvanische Abscheidung, Sputtern, Aufdampfen und/oder Atzen erzeugt wird. Das Verfahren ist dadurch gekennzeichnet, dass auf Bereiche der Federzunge thermisch eingewirkt wird und ein mechanischer Eigenspannungsgradient in der Federzunge erzeugt wird.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film (510, 520) is deposited between one or more polysilicon layer (210, 230) in a MEMS device and the TEOS-based silicon oxide layer (220). This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.
Abstract:
A micro-electro-mechanical (MEM) device and an electronic device are fabricated on a common substrate by fabricating the electronic device comprising a plurality of electronic components on the common substrate, depositing a thermally stable interconnect layer on the electronic device, encapsulating the interconnected electronic device with a protective layer, forming a sacrificial layer over the protective layer, opening holes in the sacrificial layer and the protective layer to allow the connection of the MEM device to the electronic device, fabricating the MEM device by depositing and patterning at least one layer of amorphous silicon, and removing at least a portion of the sacrificial layer. In this way, the MEM device can be fabricated after the electronic device on the same substrate.