Abstract:
The invention relates to a micromechanical component comprising a substrate (1), a first intermediate layer (2) that is disposed thereupon, and a first layer (3) which is arranged thereupon and is structured down to the first intermediate layer (2). A second intermediate layer (6) is placed on top of the first layer (3) while a second layer (9) into which at least one movable micromechanical structure (14) is structured is positioned on the second intermediate layer (6). The second intermediate layer (6) is removed in a sacrificial zone below the movable micromechanical structure (14) while the first intermediate layer (2) is removed in part in zones below the first layer (3). The invention is characterized in that the movable micromechanical structure (14) is provided with at least one stop area on a bottom face. Said stop area can be rested against a zone of the first layer (3) which is supported by the first intermediate layer (2) by deflecting the movable micromechanical structure (14). The invention further relates to a method for producing such a micromechanical component.
Abstract:
A micro electromechanical switchable capacitor is disclosed, comprising a substrate, a bottom electrode, a dielectric layer deposited on at least part of said bottom electrode, a conductive floating electrode deposited on at least part of said dielectric layer, an armature positioned proximate to the floating electrode and a first actuation area in order to stabilize the down state position of the armature. The device may furthermore comprise a second actuation area. The present invention provides shunt switches and series switches with actuation in zones attached to the floating electrode area or with relay actuation.
Abstract:
The present disclosure describes a Parylene micro check valve (10) including a micromachined silicon valve seat (15) with a roughened top surface to which a membrane cap (20) is anchored by twist-up tethers (25). The micro check valve is found to exhibit low cracking pressure, high reverse pressure, low reverse flow leakage, and negligible membrane-induced flow resistance when used as a valve over a micro orifice through which flow liquid and gas fluids.
Abstract:
A micro-electromechanical-system (MEMS) device may be formed to include an anti-stiction polysilicon layer on one or more moveable MEMS structures of a device wafer of the MEMS device to reduce, minimize, and/or eliminate stiction between the moveable MEMS structures and other components or structures of the MEMS device. The anti-stiction polysilicon layer may be formed such that a surface roughness of the anti-stiction polysilicon layer is greater than the surface roughness of a bonding polysilicon layer on the surfaces of the device wafer that are to be bonded to a circuitry wafer of the MEMS device. The higher surface roughness of the anti-stiction polysilicon layer may reduce the surface area of the bottom of the moveable MEMS structures, which may reduce the likelihood that the one or more moveable MEMS structures will become stuck to the other components or structures.
Abstract:
Processes for fabricating capacitive micromachined ultrasonic transducers (CMUTs) are described, as are CMUTs of various doping configurations. An insulating layer separating conductive layers of a CMUT may be formed by forming the layer on a lightly doped epitaxial semiconductor layer. Dopants may be diffused from a semiconductor substrate into the epitaxial semiconductor layer, without diffusing into the insulating layer. CMUTs with different configurations of N-type and P-type doping are also described.
Abstract:
A surface of a cavity of a MEMS device that is rough to reduce stiction. In some embodiments, the average roughness (Ra) of the surface is 5 nm or greater. In some embodiments, the rough surface is formed by forming one or more layers of a rough oxidizable material, then oxidizing the material to form an oxide layer with a rough surface. Another layer is formed over the oxide layer with the rough surface, wherein the roughness of the oxide layer is transferred to the another layer.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing surface area between two surfaces, such as a travel stop and travel stop region, that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of the travel stop region. This is achieved by depositing a polysilicon layer over a dielectric layer using gaseous hydrochloric acid as one of the reactants. A subsequent etch back is performed to further increase the roughness. The deposition of polysilicon and subsequent etch back may be repeated one or more times in order to obtain the desired roughness. A final polysilicon layer may then be deposited to achieve a desired thickness. This final polysilicon layer is patterned to form the travel stop regions. The rougher surface decreases the surface area available for contact and, in turn, decreases the area through which stiction can be imparted.
Abstract:
Various embodiments provide for a method for roughening a surface of a MEMs device or the surface of a CMOS surface. A first material can be deposited in a thin layer over a surface made of a second material. After heating, the first and second materials, they can partially melt and interdiffuse, forming an alloy. The first material can then be removed and the alloy is removed at the same time. The surface of the second material that is left behind has then been roughened due to the interdiffusion of the first and second materials.
Abstract:
A method of the invention includes reducing stiction of a MEMS device by providing a conductive path for electric charge collected on a bump stop formed on a substrate. The bump stop is formed by depositing and patterning a dielectric material on the substrate, and the conductive path is provided by a conductive layer deposited on the bump stop. The conductive layer can also be roughened to reduce stiction.