Abstract:
The method comprises positioning a diffraction grating with a two-dimensional meshing on the path of the beam to be analyzed and processing at least two interferograms of at least two different colors, each interferogram being obtained in a plane from two sub-beams with different diffraction orders. The invention can be used to analyze and correct divided wavefronts.
Abstract:
The present invention relates to vibration-insensitive point-diffraction interferometry. For the purpose of obtaining high immunity to vibration, a single-mode optical fiber is used to generate the reference wave, by means of point diffraction, directly from a measurement wave reflected from test objects. The capability of vibration desensitization is further strengthened by adding a spatial phase-shift device that enables four interferograms of different amounts of phase shift to be obtained simultaneously with no time delay between interferograms. The present invention may be effectively used in the design of measuring systems for in-line applications where measurements need to be performed in the presence of significant levels of vibration.
Abstract:
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Abstract:
A system for a Mach-Zender interferometer which eliminates amplitude modulation of the input light and determines the frequency modulation. Two photodetectors in series are used to receive two outputs of two arms of a Mach-Zender interferometer. The outputs of the photodetectors are summed. The path length difference is controlled by a heater which itself is controlled by a controller. The controller selectively controls the heater based on how much non-zero components are present in the output of the photodetectors.
Abstract:
A method and corresponding device, are provided for detecting the propagation time variations in the ring of an interferometer and includes phase modulation of the contrarotating waves travelling through the ring by means of assymetric square waves at a period twice the initial propagation time, which create level zero phase shift stretches in the modulation of the difference between the two waves emerging from the ring. These level stretches result in pulses in the detected output signal whose width is variable with the propagation time. The invention applies particularly to the control of the wave length of the source of the interferometer, particularly with respect to temperature variations of the source.
Abstract:
An interferometer for use in remote sensing systems includes a beam splitter that separates an input wave into a reflected wave, which travels along a first optical path within an upper interferometer arm, and a transmitted wave, which travels along a second optical path within a lower interferometer arm. The reflected and transmitted waves are subsequently recombined by the beam splitter for imaging onto a sensor. A highly dispersive element is incorporated into at least one of the pair of interferometer arms. Due to anomalous dispersion, a frequency shift in a wave transmitted through a dispersive element changes the optical path length within its corresponding arm. As a result, the recombined wave produces an interference pattern with a measurable phase change that can be utilized to calculate the original frequency shift in the input wave with great precision and potential sub-Hertz sensitivity.
Abstract:
Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.
Abstract:
A point diffraction interferometric wavefront aberration measuring device comprising an optical source, an optical splitter, a first light intensity and polarization regulator, a phase shifter, a second light intensity and polarization regulator, an ideal wavefront generator, an object precision adjusting stage, a measured optical system, an image wavefront detection unit, an image precision adjusting stage, and a data processing unit. The center distance between the first output port and the second output port of the ideal wavefront generator is smaller than the diameter of the isoplanatic region of the measured optical system and is greater than the ratio of the diameter of the image point dispersion speckle of the measured optical system over the amplification factor thereof. A method for detecting wavefront aberration of the optical system is also provided by using the device.
Abstract:
There is set forth in one embodiment an apparatus and method for imparting a phase shift to an input waveform for output of a converted waveform. In one embodiment, a phase shift can be provided by four wave mixing of an input waveform and a pump pulse. In one embodiment, there is set forth an apparatus and method for generating a high resolution time domain representation of an input waveform comprising: dispersing the input waveform to generate a dispersed input waveform; subjecting the dispersed input waveform to four wave mixing by combining the dispersed input waveform with a dispersed pump pulse to generate a converted waveform; and presenting the converted waveform to a detector unit. In one embodiment a detector unit can include a spectrometer (spectrum analyzer) for recording of the converted waveform and output of a record representing the input waveform.
Abstract:
Provided are a photodetector device and a photodetection method as well as a microscope and an endoscope allowing the heterodyne detection of a desired light to be detected with high sensitivity and at a high SN ratio. A photodetector device comprises a local light emitting unit for generating a local light in temporally unstable interference condition with a light to be detected and a photoelectric conversion unit for generating beat signals between the local light and the light to be detected by photoelectric conversion. The light is detected in heterodyne detection based on an output of the photoelectric conversion unit.