Abstract:
The present invention relates to a field emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
Abstract:
A boron nitride nanotube paste composition, an electron emission source including the same, an electron emission device including the same and a backlight unit and an electron emission display device including the same are provided. The boron nitride nanotube paste composition includes about 100 parts by weight boron nitride nanotubes, from about 250 to about 1000 parts by weight glass frit, from about 500 to about 1000 parts by weight filler, from about 1000 to about 2000 parts by weight organic solvent, and from about 2000 to about 3000 parts by weight polymer binder. Electron emission devices including the boron nitride nanotube electron emission sources have longer lifespan and improved uniformity among pixels.
Abstract:
The present invention provides a carbon nanotube (CNT) paste and a method of manufacturing the CNT paste. The carbon nanotube (CNT) paste includes first nano powder including insulating refractory material, second nano powder including metallic oxide material, solvent disgregating the first nano powder and the second nano powder, carbon nano tube disgregated in the solvent to operate as a field emission source, and organic binder included in the solvent for an attachment with an emitter electrode. Therefore, high power characteristics may be maintained even after high temperature process is performed for forming a CNT emitter.
Abstract:
Example embodiments presented herein are directed towards an x-ray generating device. The device comprises at least one electron emitter (s) (22, 22_1, 22_2, 22_3) which has an electrically conductive substrate (23). The electrically conductive substrate comprises a coating of nanostructures (24). The device further comprises a heating element(21)attachable to each electrically conductive substrate. The device further comprises an electron receiving component (14) configured to receiving electrons emitted from the at least one electron emitter (s). The device also comprises an evacuated enclosure (10) configured to house the at least one electron emitter(s), the heating element and the electron receiving component. The at least one electron emitter (s) is configured for Schottky emission when the heating element is in an on-state and the at least one electron emitter (s) is negatively biased.
Abstract:
The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
Abstract:
Example embodiments presented herein are directed towards an electron emitter (22, 22_1, 22_2, 22_3) for an x-ray tube. The electron emitter comprises an electrically conductive substrate (23) and a nanostructure material (24). The nanostructure material is comprised on at least a portion of the electrically conductive substrate. The nanostructure material is made of oxides, nitrides, silicides, selinides or tellurides. Such an electron emitter may be used for hybrid emission, such as Schottky emission or field emission.
Abstract:
Example embodiments presented herein are directed towards an electron emitter (22, 22_1, 22_2, 22_3) for an x-ray tube. The electron emitter comprises an electrically conductive substrate (23) and a nanostructure material (24). The nanostructure material is comprised on at least a portion of the electrically conductive substrate. The nanostructure material is made of oxides, nitrides, silicides, selinides or tellurides. Such an electron emitter may be used for hybrid emission, such as Schottky emission or field emission.
Abstract:
Example embodiments presented herein are directed towards an electron emitter (22, 22_1, 22_2, 22_3) for an x-ray tube. The electron emitter comprises an electrically conductive substrate (23) and a nanostructure material (24). The nanostructure material is comprised on at least a portion of the electrically conductive substrate. The nanostructure material is made of oxides, nitrides, silicides, selinides or tellurides. Such an electron emitter may be used for hybrid emission, such as Schottky emission or field emission.
Abstract:
The invention relates to nano granular materials (NGM) which has the extraordinary capability to conduct current in a 100 fold current density compared to high Tc superconductors by charges moving in form of Bosons produced by Bose-Einstein-Condensation (BEC) in overlapping excitonic surface orbital states at room temperature and has a light dependent conductivity. The material is disposed between electrically conductive connections and is a nano-crystalline composite material. The invention further relates to electrical components comprising NGM and methods and arrangements for making it by corpuscular -beam induced deposition applied to a substrate, using inorganic compounds being adsorbed on the surface of the substrate owing to their vapor pressure, and which render a crystalline conducting phase embedded in an inorganic insolating matrix enclosing the material.