Abstract:
A band gap mass filter for separating particles of mass (M1) from particles of mass (M2) in a multi-species plasma includes a chamber defining an axis. Coils around the chamber generate an axially aligned magnetic field defined (BnullB0nullB1 sin nullt), with an antenna generating the sinusoidal component (B1 sin nullt) to induce an azimuthal electric field (Enull) in the chamber. The resultant crossed electric and magnetic fields place particles M2 on unconfined orbits for collection inside the chamber, and pass the particles M1 through said chamber for separation from the particles M2. Unconfined orbits for particles M2 are determined according to an null-null plot 1 ( null = null 0 2 + null 1 2 / 2 4 null null 2 , and null null null null = null 0 null null 1 8 null null 2 ) , where null0 is the cyclotron frequency for particles with mass/charge ratio M, and wherein null0nullB0/M and null1nullB1/M.
Abstract:
A gas ionizer is provided for use in a solid state mass spectrograph for analyzing a sample of gas. The gas ionizer is located in a cavity provided in a semiconductor substrate which includes an inlet for introducing the gas to be analyzed. The gas ionizer ionizes the sample of gas drawn into the cavity through the inlet to generate an ionized sample gas. The gas ionizer generates energetic particles or photons which bombard the gas to be sampled to produce ionized gas. The energetic particles or photons can be generated by reverse-bias p-n junctions, radioactive isotopes, electron discharges, point emitters, and thermionic electron emitters. A layer of cesium chloride or cesium iodide having a low work function is formed on top of the reverse-bias p-n junction gas ionizer to increase current emitted per junction area and so that the gas ionizer can be exposed to atmospheric oxygen during storage and can operate in reduced atmosphere with no additional treatments. The cesium chloride layer and the cesium iodide layer do not readily electromigrate. A fabrication process of the mass spectrograph includes using plural masks to ensure proper exposure of resist on both flat and wall surfaces of the semiconductor surface having severe topography.
Abstract:
Purely electrical or magnetic deflection systems are usually utilized in the probe-shaping part of modern electron beam tomographs in order to remove the gas ions generated in the evacuated drift tube by electron impact from the beam. The known deflection systems, however, cause an offset of the electron beam, so that this enters extra-axially into the lens element following the deflection system. In the apparatus for removing ions from an electron beam disclosed herein, a deflection unit (Wien filter) generates an E.times.B field oriented perpendicular to the beam axis that exerts strong shearing forces only on the positively charged gas ions, but does not influence the electrons. The deflection unit is essentially composed of two tube electrodes lying at a constant potential, of an electrostatic octopole deflector, and two saddle coil pairs annularly surrounding the octopole deflector. The apparatus is useful for fast electron beam tomographs, including x-ray scanners.
Abstract:
A micromachined mass spectrometer includes an ionizer, a separation region and a detector. The ionizer is formed from an upper electrode, a center electrode and a lower electrode. Ionization of a sample gas takes place around an edge of the center electrode. Accelerating electrodes extract ionized particles from the ionizer. Ionized particles are accelerated through the separation region. A magnetic field is applied in a direction perpendicular to travel of the ionized particles through the separation region causing the trajectory of the ionized particles to bend. The mass spectrometer is formed using micromachined techniques and is carried on a single substrate.
Abstract:
A mass filter is provided for use in a solid state mass spectrograph for analyzing a sample of gas. The mass filter is located in a cavity provided in a semiconductor substrate. The mass filter generates an electromagnetic field in the cavity which filters by mass/charge ratio an ionized portion of the sample of gas. The substrate has an inlet through which the gas to be analyzed flows through prior to reaching the mass filter. The mass filter can be either a single-focussing Wien filter or magnetic sector filter or can be a double-focussing filter which uses both an electric field and a magnetic field to separate the ions.
Abstract:
Method and apparatus for separating selectively ionized particles of one isotope type from the background environment of charged and neutral particles. In particular, a particle flow is generated which contains neutral particles of plural isotope types, as well as a number of ions of the various isotope types. It is desired to selectively ionize and separately collect only those particles of one isotope type and for this purpose, an acceleration is produced in the ions of the background environment prior to selective ionization of the desired isotope particles. After selective ionization, a further acceleration, in an opposite direction, is produced upon the charged particles which results in a deflection of the selectively ionized particles towards collection surfaces and restores to generally normal flow velocity and charge distribution, the ions from the background environment.
Abstract:
This invention provides a multi-pole type Wien filter, which acts more purely approaching its fundamentally expected performance. A 12-electrode electric device acts as an electric deflector, or acts as an electric deflector and an electric stigmator together. A cylindrical 4-coil magnetic device with a magnetic core acts as a magnetic deflector. Both can produce a dipole field while only incurring a negligibly-small 3rd order field harmonic. The magnetic core enhances the strength and more preciously regulates the distribution of the magnetic field originally generated by the coils. Then two ways to construct a Wien filter are proposed. One way is based on both of the foregoing electric and magnetic devices, and the other way is based on the foregoing electric device and a conventional magnetic deflector. The astigmatism in each of such Wien filters can be compensated by the electric stigmator of the electric device.
Abstract:
This invention provides a design of Wien filter for satisfying Wien Condition so as to ensure the Wien filter's performance. At first, to minimize the magnetic flux leaking out of the Wien filter, the invention proposes three measures to form a magnetic circuit to cover the magnetic device of a Wien filter respectively. The measures especially benefit a Wien filter acting as beam separator or Monochromator in a high resolution SEM. Secondly, based on the Wien filter proposed in cross-reference, several ways are provided for reducing the dissatisfaction of Wien Condition within the Wien filter, which especially modify either or both of the distribution shapes of the on-axis electric and magnetic dipole fields at two ends of the Wien filter. These ways provide more flexibility to reduce the dissatisfaction of Wien Condition in a Wien filter to a given degree at a reasonable manufacturing cost.
Abstract:
A solid state compact ion gauge includes an electron source, a gate electrode, an electron collector, a gas ionizer, an ion anode, and a detector all formed within a cavity of a semiconductor substrate formed of two halves bonded together and having open sides for receiving a gase sample. A sample of gas having multiple gas constituents flows into the cavity from the side where gas molecules collide with electrons flowing from the source to the collector forming ions. The ions are forced under an electric field to the detector which includes a set of detectors for sensing the constituent ions.
Abstract:
An apparatus for removing selected metal ions from a plasma includes a plasma chamber and at least one silica substrate mounted inside the chamber. More specifically, the substrate is exposed in the chamber so that when metal ions from the plasma contact the substrate they diffuse into the substrate to create a liquified layer. A receptacle is also provided to receive the liquid from the layer as it flows from the substrate.