Abstract:
In a gas discharge tube in which a sealed envelope at least a part of which transmits light is filled with a gas, and electric discharge is generated between anode and cathode sections disposed within the sealed envelope, so as to emit predetermined light outside from the light-transmitting part of the sealed envelope, the anode section is mounted on an insulating anode support member, an insulating electrode support member having an opening for exposing the anode section is mounted on a surface surrounding the anode section, a focusing electrode having a focusing opening projecting toward the anode section is further mounted at the front face of the opening, and the cathode section is disposed on the anode support member or focusing electrode support member so as to be spaced from the focusing opening.
Abstract:
In the gas discharge tube of the present invention, for elongating the life of the discharge tube itself while lowering the assembling temperature, a side tube itself is formed from glass, and a metal is employed in a joint between a stem and the side tube. Namely, a metal-made first peripheral portion provided in the stem and a metal-made second peripheral portion provided in the side tube are utilized in the joint. As a result, the discharge tube itself can be made smaller.
Abstract:
Excimers are formed in a gas (30, 130) by applying a pulsed potential between a first electrode (14, 114) and a counter electrode (26, 126) so that corona discharge occurs, substantially without arcing, when the potential is on. The pulses or on-times of the potential desirably are about 100 microseconds or less. Use of a pulsed potential provides greater efficiency than a constant potential. Where the excimer-forming gas is a pure inert gas, the gas desirably contains less than 10 ppm water vapor.
Abstract:
The present invention may be used in the field of microelectronics, in medicine as well as in the production of lighting appliances. The method and the device of the present invention are used for increasing the brightness of optical radiation sources powered by low-voltage power supplies. The optical radiation is generated by emitting electrons and by exciting the radiation. The electrons are generated by emitting the same from the surface of a cathode, while the excitation of the radiation involves accelerating the electrons in the gaseous interval up to an energy exceeding the excitation energy of the radiating levels of the gas. To this end, a voltage is applied between the cathode and the anode, wherein said voltage does not exceed the ignition voltage of a self-maintained discharge. The device of the present invention comprises a chamber as well as electrodes having surfaces which are transparent to the radiation. The gas pressure inside the chamber is determined from balance conditions between the energetic length of an electron trip and the distance between said electrodes.
Abstract:
The invention relates to light sources with laser pumping and to methods for generating radiation with a high luminance in the ultraviolet (UV) and visible spectral ranges. The technical result of the invention includes extending the functional possibilities of a light source with laser pumping by virtue of increasing the luminance, increasing the coefficient of absorption of the laser radiation by a plasma, and significantly reducing the numerical aperture of a divergent laser beam which is to be occluded and which is passing through the plasma. The device comprises a chamber containing a gas, a laser producing a laser beam, an optical element, a region of radiating plasma produced in the chamber by the focused laser beam, an occluder, which is mounted on the axis of the divergent laser beam on the second side of the chamber, and an optical system for collecting plasma radiation.
Abstract:
This light source 1 is provided with a luminescent cylinder 3A housing a luminescent part 2 to generate light; a light guide cylinder 3B connected to the luminescent cylinder 3A on a one end side, and configured to guide the light generated by the luminescent part 2, to an exit window 4 provided on the other end side; and a cylindrical reflective cylinder 9 inserted and fixed between the exit window 4 of the light guide cylinder 3B and a portion connecting the luminescent cylinder 3A and the exit window 4, and having an inner wall surface as a reflective surface 9a to reflect the light.
Abstract:
A pixel structure of display apparatus includes a first substrate and a second substrate. Several cathode structure layers are disposed on the first substrate. The second substrate is a light-transmissive material. Several anode structure layers are disposed on the second substrate, and are light-transmissive conductive materials. The first substrate faces to the second substrate, so that the cathode structure layers are respectively aligned with the anode structure layers. A separation structure is disposed between the first substrate and the second substrate, for respective partitioning the anode structure layers and the cathode structure layers to form several spaces. Several fluorescent layers are respectively disposed between the anode structure layers and the cathode structure layers. A low-pressure gas is respectively filled into the spaces. The low-pressure gas has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
Abstract:
An electron emission light-emitting device includes a cathode structure, an anode structure, a fluorescent layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure, having a function of inducing the cathode to emit electron uniformly. The low-pressure gas layer has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
Abstract:
A light source has a rear glass substrate and a front glass substrate having a plate surface disposed in facing relation to a principal surface of the rear glass substrate. The plate surface of the front glass substrate is coated with a phosphor. A two-dimensional array of electron emitters is disposed on the principal surface of the rear glass substrate. A space defined between the rear glass substrate and the front glass substrate is filled with a gas. The gas may be an Hg (mercury) gas or an Xe (xenon) gas.